
ibm.com/redbooks

Database Partitioning,
Table Partitioning, and
MDC for DB2 9

Whei-Jen Chen
Alain Fisher
Aman Lalla

Andrew D McLauchlan
Doug Agnew

Differentiating database partitioning,
table partitioning, and MDC

Examining implementation
examples

Discussing best
practices

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Database Partitioning, Table Partitioning, and MDC
for DB2 9

August 2007

International Technical Support Organization

SG24-7467-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2007)

This edition applies to DB2 Enterprise Server Edition Version 9 for Linux, UNIX, and Windows.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this book . ix
Acknowledgement . xi
Become a published author . xi
Comments welcome. xi

Chapter 1. Introduction to partitioning technologies. 1
1.1 Databases and partitioning . 2

1.1.1 Database concepts . 2
1.2 Table partitioning. 8

1.2.1 Concepts . 8
1.3 Multi-dimensional clustering . 9

1.3.1 Concepts . 9

Chapter 2. Benefits and considerations of database partitioning, table
partitioning, and MDC. 15

2.1 Database partitioning feature . 16
2.1.1 The benefits of using database partitioning feature 16
2.1.2 Usage considerations . 19

2.2 Table partitioning. 21
2.2.1 Benefits . 22
2.2.2 Usage considerations . 25

2.3 Multi-dimensional clustering . 27
2.3.1 Benefits . 27
2.3.2 Usage considerations . 28

2.4 Combining usage . 29

Chapter 3. Database partitioning . 35
3.1 Requirements . 36

3.1.1 Supported operating systems and hardware 36
3.1.2 Minimum memory requirements . 37

3.2 Planning considerations . 37
3.2.1 Deciding on the number of database partitions. 38
3.2.2 Logical and physical database partitions . 39
3.2.3 Partition groups . 39
3.2.4 Distribution maps and distribution keys. 40
© Copyright IBM Corp. 2007. All rights reserved. iii

3.2.5 Table spaces and containers . 41
3.2.6 Sizing the tables . 42
3.2.7 Buffer pools . 43
3.2.8 Catalog partition . 43
3.2.9 Coordinator partition . 44
3.2.10 Data placement and table join strategies . 44

3.3 Implementing DPF on UNIX and Linux . 45
3.3.1 Creating instances and databases . 46
3.3.2 Defining database partitions . 47
3.3.3 Setting up inter-partition communications . 48
3.3.4 Creating database. 50
3.3.5 Switching partitions . 51
3.3.6 Adding database partitions . 52
3.3.7 Removing database partitions. 53
3.3.8 Creating database partition groups . 55
3.3.9 Viewing partition groups . 55
3.3.10 Redistributing partition groups . 56
3.3.11 Altering database partition groups . 58
3.3.12 Dropping a database partition group. 61
3.3.13 Implementing buffer pools. 61
3.3.14 Implementing table spaces . 63
3.3.15 Implementing tables . 66

3.4 Implementing DPF on Windows . 71
3.4.1 Installing DB2 Enterprise 9 on Windows . 71
3.4.2 Working with partitioned databases . 79
3.4.3 DB2 Remote Command Service . 81

3.5 Administration and management. 81
3.5.1 DB2 utilities . 81
3.5.2 Monitoring . 94
3.5.3 Rebalancer . 106

3.6 Using Materialized Query Tables to speed up performance in a DPF
environment . 119

3.6.1 An overview of MQTs . 119
3.6.2 When to consider a MQT . 119
3.6.3 When to use the MQT . 120
3.6.4 Intra-database replicated tables and partitioning 121

3.7 Best practices . 122
3.7.1 Selecting the number of partitions. 122
3.7.2 Distribution key selection . 123
3.7.3 Collocation . 124
iv Database Partitioning, Table Partitioning, and MDC for DB2 9

Chapter 4. Table partitioning . 125
4.1 Planning considerations . 126

4.1.1 Roll-in and roll-out strategies . 126
4.1.2 Range selection . 128
4.1.3 Handling large objects. 128
4.1.4 Indexing partitioned tables . 128

4.2 Implementing table partitioning . 129
4.2.1 Creating a data partitioned table . 130
4.2.2 Adding a new partition. 141
4.2.3 Detaching a partition . 143
4.2.4 Re-attaching a partition . 145
4.2.5 RANGE option. 146
4.2.6 Handling large objects. 154
4.2.7 Optimal storage configurations for table partitioning. 156
4.2.8 Partition elimination. 157

4.3 Administration and management. 159
4.3.1 Utilities. 159
4.3.2 DB2 Explain . 161
4.3.3 Locking considerations . 166
4.3.4 Troubleshooting . 167
4.3.5 Using partitioned tables in your existing database 168
4.3.6 Authorization levels . 171

4.4 Best practices . 172

Chapter 5. Multi-dimensional clustering . 177
5.1 Planning for the use of MDC on a table . 178

5.1.1 Verify database configuration . 178
5.1.2 Determine query workload . 178
5.1.3 Identify dimensions and columns . 179
5.1.4 Estimate space requirements . 180
5.1.5 Adjust design as needed. 184
5.1.6 DB2 Design Advisor . 185

5.2 Implementing MDC on a table. 185
5.3 Administering and monitoring MDC tables . 188

5.3.1 Utilities. 188
5.3.2 Monitoring MDC tables . 190
5.3.3 Explain . 190

5.4 Application considerations for MDC tables . 193
5.5 Examples of using MDC . 194

5.5.1 Applying MDC to the TPC customer table 194
5.5.2 Utilizing both dimension and row-level indexes 201
5.5.3 Using the Control Center to run DB2 Design Advisor 206
5.5.4 Using MDC to provide roll-out functionality 211
 Contents v

5.5.5 Using MDC on a fact table in a star schema warehouse 213

Chapter 6. Using database partitioning, table partitioning, and MDC
together . 215

6.1 Database partitioning and MDC . 216
6.2 Database partitioning and table partitioning . 219

6.2.1 Logical representation. 219
6.2.2 Implementing a table using table partitioning and database partitioning

220
6.3 Table partitioning and MDC. 228
6.4 Database partitioning, table partitioning, and MDC. 231

Appendix A. Configuring DB2 for SSH in a partitioned environment. . . 235
A.1 Setting up public key authentication . 236
A.2 Setting up host-based authentication . 238

A.2.1 SSH server configuration . 238
A.2.2 SSH client configuration . 241

A.3 Configuring DB2 to use ssh . 241

Appendix B. Additional material . 243
Locating the Web material . 243
Using the Web material . 244

System requirements for downloading the Web material 244
How to use the Web material . 244

Related publications . 245
IBM Redbooks publications . 245
Other publications . 245
Online resources . 247
How to get Redbooks publications . 248
Help from IBM . 248

Index . 249
vi Database Partitioning, Table Partitioning, and MDC for DB2 9

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. vii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
eServer™
pSeries®
zSeries®
AIX®

DB2 Connect™
DB2®
IBM®
Lotus®
POWER™

Redbooks®
System p™
Tivoli®
1-2-3®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Solaris, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Excel, Microsoft, SQL Server, Windows, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Intel, Itanium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii Database Partitioning, Table Partitioning, and MDC for DB2 9

Preface

As organizations strive to do more with less, DB2® Enterprise Server Edition V9
for Linux®, Unix, and Windows® contains innovative features for delivering
information on demand and scaling databases to new levels. The table
partitioning, newly introduced in DB2 9, and database partitioning feature provide
scalability, performance, and flexibility for data store. The multi-dimension
clustering table enables rows with similar values across multiple dimensions to
be physically clustered together on disk. This clustering allows for efficient I/O
and provides performance gain for typical analytical queries.

How are these features and functions different? How do you decide which
technique is best for your database needs? Can you use more than one
technique concurrently?

This IBM® Redbooks® publication addresses these questions and more. Learn
how to set up and administer database partitioning. Explore the table partitioning
function and how you can easily add and remove years of data on your
warehouse. Analyze your data to discern how multi-dimensional clustering can
drastically improve your query performance.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2 system administration.
Whei-Jen is an IBM Certified Solutions Expert in Database Administration and
Application Development as well as an IBM Certified IT Specialist.

Alain Fisher is a software support specialist for IBM Technical Support Services
in the United Kingdom. He has 10 years of IT experience on a number of
platforms. His experience includes supporting DB2 on Linux, UNIX®, and
Windows as well as VMWare and Windows server support. He has also worked
on the Microsoft® SQL Server™ to IBM DB2 UDB Conversion Guide IBM
Redbooks publication.

Aman Lalla is a software development analyst at the IBM Toronto Lab in
Canada. He has 10 years of experience with DB2 on the distributed platforms.
© Copyright IBM Corp. 2007. All rights reserved. ix

He has worked at IBM for 10 years. His areas of expertise include DB2 problem
determination. He has previously written an IBM Redbooks publication on DB2
Data Links Manager.

Andrew D McLauchlan is a DB2 Database Administrator and Systems
programmer in Australia. He has 29 years of experience in IBM in mainframe
hardware maintenance, manufacturing, Oracle® database administration, and
DB2 database administration. He holds a degree in Electrical Engineering from
Swinburne University, Melbourne, Australia. His areas of expertise include DB2,
AIX®, Linux, and Z/OS. He is a member of the IBM Global Services Australia
DB2 support group.

Doug Agnew is a DB2 Database Administrator in the United States. He has 34
years of experience in applications development, database design and modeling,
and DB2 administration. He holds a degree in Applied Mathematics from the
University of North Carolina - Charlotte. His areas of expertise include database
administration, data modeling, SQL optimization, and AIX administration. He is
an IBM Certified DBA for DB2 9 on Linux, UNIX, and Windows and is a member
of the DBA Service Center.

Figure 0-1 Left to right: Alain, Doug, Aman, and Andrew
x Database Partitioning, Table Partitioning, and MDC for DB2 9

Acknowledgement

Thanks to the following people for their contributions to this project:

Liping Zhang
Kevin Beck
Paul McInerney
Sherman Lau
Kelly Schlamb
IBM Software Group, Information Management

Emma Jacobs and Sangam Racherla
International Technical Support Organization, San Jose Center

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xii Database Partitioning, Table Partitioning, and MDC for DB2 9

Chapter 1. Introduction to partitioning
technologies

As databases and data warehouses become larger, organizations have to be
able to manage an increasing amount of stored data. To handle database
growth, Relational Database Management Systems (RDBMS) have to
demonstrate scalable performance as additional computing resources are
applied.

In this IBM Redbooks publication, we introduce three features available in DB2 9
for Linux, UNIX, and Windows to help manage the growth of your data. In this
chapter, we give an overview of the terminologies and concepts that we use
throughout this book. The topics we look at are:

� DB2 9 database concepts, including concepts specifically related to the
Database Partitioning Feature (DPF), such as partitions, partition groups,
distribution keys, distribution maps, and the coordinator partition

� Table partitioning concepts including table partition, partition key, and roll-in
and roll-out

� Multi-dimensional clustering (MDC) concepts, such as block, block index,
dimension, slice, and cell

Although DPF is a licensed feature while table partitioning and MDC are
functions built into the database engine, we refer to all three collectively in this
chapter as partitioning technologies.

1

© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 Databases and partitioning

The Database Partitioning Feature (DPF) is a value-added option available with
DB2 Enterprise 9. It extends the capability of DB2 9 into the parallel,
multi-partition environment, improving the performance and the scalability of very
large databases. This allows very complex queries to execute much faster. DB2
Enterprise 9 with DPF is an ideal solution for managing data warehousing and
data mining environments, but it can also be used for large online transaction
processing (OLTP) workloads.

1.1.1 Database concepts

In this section, we give an overview of several of the database partitioning and
DB2 database concepts that we discuss throughout this book.

Partition
A database partition can be either logical or physical. Logical partitions reside on
the same physical server and can take advantage of symmetric multiprocessor
(SMP) architecture. Having a partitioned database on a single machine with
multiple logical nodes is known as having a shared-everything architecture,
because the partitions use common memory, CPUs, disk controllers, and disks.
Physical partitions consist of two or more physical servers, and the database is
partitioned across these servers. This is known as a shared-nothing architecture,
because each partition has its own memory, CPUs, disk controllers, and disks.

Each partitioned instance is owned by an instance owner and is distinct from
other instances. A DB2 instance is created on any one of the machines in the
configuration, which becomes the “primary machine.” This primary server is
known as the DB2 instance-owning server, because its disk physically stores the
instance home directory. This instance home directory is exported to the other
servers in the DPF environment. On the other servers, a DB2 instance is
separately created: all using the same characteristics, the same instance name,
the same password, and a shared instance home directory. Each instance can
manage multiple databases; however, a single database can only belong to one
instance. It is possible to have multiple DB2 instances on the same group of
parallel servers.

Figure 1-1 on page 3 shows an environment with four database partitions across
four servers.
2 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 1-1 Database partitions

Partition groups
A database partition group is a logical layer that allows the grouping of one or
more partitions. Database partition groups allow you to divide table spaces
across all partitions or a subset of partitions. A database partition can belong to
more than one partition group. When a table is created in a multi-partition group
table space, some of its rows are stored in one partition, and other rows are
stored in other partitions. Usually, a single database partition exists on each
physical node, and the processors on each system are used by the database
manager at each database partition to manage its own part of the total data in
the database. Figure 1-2 on page 4 shows four partitions with two partition
groups. Partition group A spans three of the partitions and partition group B
spans a single partition.

Server 1

DB2
Partition

1

High speed interconnect

Database Partitions

Server 2

DB2
Partition

2

Server 3

DB2
Partition

3

Server 4

DB2
Partition

4

 Chapter 1. Introduction to partitioning technologies 3

Figure 1-2 Partition groups

Table space
A table space is the storage area for your database tables. When you issue the
CREATE TABLE command you specify the table space in which the table is
stored. DB2 uses two types of table spaces: System-Managed Space (SMS) and
Database-Managed Space (DMS). SMS table spaces are managed by the
operating system, and DMS table spaces are managed by DB2.

In general, SMS table spaces are better suited for a database that contains many
small tables, because SMS is easier to maintain. With an SMS table space, data,
indexes, and large objects are all stored together in the same table space. DMS
table spaces are better suited for large databases where performance is a key
factor. Containers are added to DMS table spaces in the form of a file or raw
device. DMS table spaces support the separation of data, indexes, and large
objects. In a partitioned database environment, table spaces belong to one
partition group allowing you to specify which partition or partitions the table space
spans.

Container
A container is the physical storage used by the table space. When you define a
table space, you must select the type of table space that you are creating (SMS
or DMS) and the type of storage that you are using (the container). The container
for an SMS table space is defined as a directory and is not pre-allocated;

Database manager instance
Database

Partition 1 Partition 4Partition 3Partition 2

Partition
group A

Partition
group A

Partition
group B

Partition
group A

Tablespace
1

Tablespace
1

Tablespace
2

Tablespace
1

Tablespace
3

Tablespace
3

Tablespace
3

4 Database Partitioning, Table Partitioning, and MDC for DB2 9

therefore, data can be added as long as there is enough space available on the
file system. DMS table spaces use either a file or a raw device as a container,
and additional containers can be added to support growth. In addition, DMS
containers can be resized and extended when necessary.

Buffer pools
The buffer pool is an area of memory designed to improve system performance
by allowing DB2 to access data from memory rather than from disk. It is
effectively a cache of data that is contained on disk which means that DB2 does
not have the I/O overhead of reading from disk. Read performance from memory
is far better than from disk.

In a partitioned environment, a buffer pool is created in a partition group so that it
can span all partitions or single partition, depending on how you have set up your
partition groups.

Prefetching
Prefetching is the process by which index and data pages are fetched from disk
and passed to the buffer pools in advance of the index and data pages being
needed by the application. This can improve I/O performance; however, the most
important factors in prefetching performance are the extent size, prefetch size,
and placement of containers on disk.

Extent
An extent is the basic unit for allocations and is a block of pages that is written to
and read from containers by DB2. If you have specified multiple containers for
your table space, the extent size can determine how much data is written to the
container before the next container is used, in effect, striping the data across
multiple containers.

Page
A page is a unit of storage within a table space, index space, or virtual memory.
Pages can be 4 KB, 8 KB, 16 KB, or 32 KB in size. Table spaces can have a
page with any of these sizes. Index space and virtual memory can have a page
size of 4 KB. The page size can determine the maximum size of a table that can
be stored in the table space.

Distribution maps and distribution keys
When a database partition group is created, a distribution map is generated. A
distribution map is an array of 4096 entries, each of which maps to one of the
database partitions associated with the database partition group. A distribution
key is a column (or group of columns) that is used to determine the partition in
which a particular row of data is stored. The distribution key value is hashed to
 Chapter 1. Introduction to partitioning technologies 5

generate the partition map index value. The hash value ranges from 0 to 4095.
The distribution map entry for the index provides the database partition number
for the hashed row. DB2 uses a round-robin algorithm to specify the partition
numbers for multiple-partition database partition groups. There is only one entry
in the array for a database with a single partition, because all the rows of a
database reside in one partition database partition group.

Figure 1-3 shows the partition map for database partition group 1 with partitions
1,2, and 4.

Figure 1-3 Distribution map for partition group 1

Figure 1-4 on page 7 shows how DB2 determines on which partition a given row
is stored. Here, the partition key EMPNO (value 0000011) is hashed to a value 3,
which is used to index to the partition number 1.

1421….421421421

Database partition group 1

Position 0 Position 4095
6 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 1-4 DB2 process to identify the partition where the row is to be placed

Coordinator partition
The coordinator partition is the database partition to which a client application or
a user connects. The coordinator partition compiles the query, collects the
results, and then passes the results back to the client, therefore handling the
workload of satisfying client requests. In a DPF environment, any partition can be
the coordinator node.

Catalog partition
The SYSCATSPACE table space contains all the DB2 system catalog
information (metadata) about the database. In a DPF environment,
SYSCATSPACE cannot be partitioned, but must reside in one partition. This is
known as the catalog partition. When creating a database, the partition on which
the CREATE DATABASE command is issued becomes the catalog partition for
the new database. All access to system tables goes through this database
partition.

Partition 4Partition 3Partition 2Partition 1

…………421421421421Partitions
4095…………11109876543210Index

0000011

CUSTOMER
3

Distribution Map

Hashing Function
 Chapter 1. Introduction to partitioning technologies 7

1.2 Table partitioning

The table partitioning feature provides a way of creating a table where each
range of the data in the table is stored separately. For example, you can partition
a table by month. Now, all data for a specific month is kept together. In fact,
internally, the database represents each range as a separate table. It makes
managing table data much easier by providing the roll-in and roll-out through
table partition attach and detach. It can also potentially boost query performance
through data partition elimination.

1.2.1 Concepts

This section introduces some of the table partitioning concepts that we cover in
more depth in this book.

Table partitions
Each partition in your partitioned table is stored in a storage object that is also
referred to as a data partition or a range. Each data partition can be in the same
table space, separate table spaces, or a combination of both. For example, you
can use date for a range, which allows you to group data into partitions by year,
month, or groups of months. Figure 1-5 shows a table partitioned into four data
partition ranges with three months in each range.

Figure 1-5 Table partition range

Partition keys
The value which determines how a partitioned table is divided is the partition key.
A partition key is one or more columns in a table that are used to determine to
which table partitions the rows belong.

Jan
Feb
Mar

Oct
Nov
Dec

Jul
Aug
Sep

Apr
May
Jun

Table
Range1 Range2 Range3 Range4
8 Database Partitioning, Table Partitioning, and MDC for DB2 9

Roll-in and roll-out (attach and detach)
Table partitioning provides the capability of rolling a data partition into and out
from a table by using DB2 commands or the GUI tool. By attaching a new
partition, you can add an existing table, including data, or an empty partition to a
partitioned table as a new partition. Data can be loaded or inserted into the
empty partition afterward. The recently added partition must conform to certain
criteria for the partitioning range. You also can split off a table partition as an
independent table by detaching the partition.

Table partition elimination
Table partition elimination (also known as data partition elimination) refers to
the database server’s ability to determine, based on the query predicates, that
only a subset of the table partitions of a table needs to be accessed to answer a
query. Table partition elimination offers particular benefit when running decision
support queries against a partitioned table.

1.3 Multi-dimensional clustering

Multi-dimensional clustering (MDC) provides an elegant method for flexible,
continuous, and automatic clustering of data along multiple dimensions. MDC is
primarily intended for data warehousing and large database environments, but
can also be used in OLTP environments. MDC enables a table to be physically
clustered on more than one key (or dimension) simultaneously.

1.3.1 Concepts

This section introduces several of the multi-dimensional clustering concepts that
we discuss in further detail in this book.

Block
A block is the smallest allocation unit of an MDC. A block is a consecutive set of
pages on the disk. The block size determines how many pages are in a block. A
block is equivalent to an extent.

Block index
The structure of a block index is almost identical to a regular index. The major
difference is that the leaf pages of a regular index are made up of pointers to
rows, while the leaf pages of a block index contain pointers to extents. Because
each entry of a block index points to an extent, whereas the entry in a regular
index points to a row, a block index is much smaller than a regular index, but it
still points to the same number of rows. In determining access paths for queries,
 Chapter 1. Introduction to partitioning technologies 9

the optimizer can use block indexes in the same way that it uses regular indexes.
You can use AND and OR for the block indexes with other block indexes. You
can also use AND and OR for block indexes with regular indexes. Block indexes
can also be used to perform reverse scans. Because the block index contains
pointers to extents, not rows, a block index cannot enforce the uniqueness of
rows. For that, a regular index on the column is necessary. Figure 1-6 shows a
regular table with a clustering index and Figure 1-7 on page 11 shows an MDC.

Figure 1-6 A regular table with a clustering index

Table

Region

Year

Clustering index

Unclustering index
10 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 1-7 Multi-dimensional clustering table

Dimension
A dimension is an axis along which data is organized in an MDC table. A
dimension is an ordered set of one or more columns, which you can think of as
one of the clustering keys of the table. Figure 1-8 on page 12 illustrates a
dimension.

North

2007

North

2006

South

2005

East

2005

West

2007

Region

Year

Block
Block index
 Chapter 1. Introduction to partitioning technologies 11

Figure 1-8 Dimensions for country, color, and year

Slice
A slice is the portion of the table that contains all the rows that have a specific
value for one of the dimensions. Figure 1-9 on page 13 shows the Canada slice
for the country dimension.

2002,
Canada,

blue

2002,
Mexico,
yellow

2002,
Mexico,

blue

2002,
Canada,
yellow

2001,
Mexico,
yellow2002,

Mexico,
yellow

2001,
Canada,
yellow2002,

Canada,
yellow

year
dimension

color
dimension

country
dimension
12 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 1-9 The slice for country Canada

Cell
A cell is the portion of the table that contains rows having the same unique set of
dimension values. The cell is the intersection of the slices from each of the
dimensions. The size of each cell is at least one block (extent) and possibly
more. Figure 1-10 on page 14 shows the cell for year 2002, country Canada, and
color yellow.
 Chapter 1. Introduction to partitioning technologies 13

Figure 1-10 The cell for dimension values (2002, Canada, and yellow)

You can read more information about the topics that we discuss in this chapter in
the DB2 9 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

Cell for
(2002,
Canada,
yellow)

Each cell
contains
one or more
blocks

2002, 2002,
Canada, Canada,

blueblue

2002, 2002,
Mexico, Mexico,
yellowyellow

2002, 2002,
Mexico, Mexico,

blueblue

2002, 2002,
Canada, Canada,
yellowyellow

1998,
Canada,
yellow

2002, 2002,
Mexico, Mexico,
yellowyellow

1998,
Mexico,
yellow2002, 2002,

Canada, Canada,
yellowyellow

year
dimension

color
dimension

2001,
Canada,
yellow

2001,
Mexico,
yellow

country
dimension
14 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

Chapter 2. Benefits and considerations
of database partitioning,
table partitioning, and MDC

In this chapter, we discuss the benefits and considerations of the database
partitioning, the table partitioning, and MDC. We provide information about the
advantages of using these features and functions to help you gain an
understanding of the added complexity when using them. Used appropriately,
database partitioning, table partitioning, and MDC enhance your use of DB2.

2

© Copyright IBM Corp. 2007. All rights reserved. 15

2.1 Database partitioning feature

This section highlights several of the benefits and usage considerations that you
need to take into account when evaluating the use of the Database Partitioning
Feature (DPF) in DB2 V9.

2.1.1 The benefits of using database partitioning feature

In this section, we discuss several of the key benefits of using database
partitioning.

Support for various hardware configurations
DB2 9 with DPF enabled supports symmetric multiprocessor (SMP), massively
parallel processing (MPP), and clustered hardware configurations.

SMP is a hardware concept in which a single physical machine has multiple
CPUs. From a DB2 with DPF-enabled point of view, this is a shared everything
architecture, because each database partition shares common CPUs, memory,
and disks as shown in Figure 2-1.

Figure 2-1 An SMP configuration

MPP is a hardware concept in which a set of servers is connected by a
high-speed network and a shared nothing application, such as DB2, is used as
shown in Figure 2-2 on page 17.

DiskDisk DiskDiskDiskDisk

Partition

Memory

CPU CPU CPU
16 Database Partitioning, Table Partitioning, and MDC for DB2 9

.

Figure 2-2 An MPP configuration

A clustered configuration is simply an interconnection of SMP machines with the
database on a shared disk as shown in Figure 2-3.

Figure 2-3 A clustered configuration

DiskDisk

Memory

CPU

DiskDisk

Memory

CPU

DiskDisk

Memory

CPU

Partition

Machine Machine Machine

High-Speed Network

DiskDisk

Partition

High-Speed Network

Memory

Machine

CPUCPU CPU

Memory

Machine

CPUCPU CPU
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 17

Shared nothing architecture
DB2 with DPF enabled can be configured with multiple database partitions and
utilize a shared nothing architecture. This implies that no CPUs, data, or memory
are shared between database partitions, which provides good scalability.

Scalability
Scalability refers to the ability of a database to grow while maintaining operating
and response time characteristics. As a database grows, scalability in a DPF
environment can be achieved by either scaling up or scaling out. Scaling up
refers to growing by adding more resources to a physical machine. Scaling out
refers to growing by adding additional physical machines.

Scale up a DPF-enabled database by adding more physical resources, such as
CPUs, disks, and memory, to the physical machine.

Scale out a DPF-enabled database by adding a physical machine to the
configuration. This implies adding another physical database partition on the
physical machine. The database can then be spread across these new physical
partitions to take advantage of the new configuration.

When planning a DPF environment, consider whether to add logical or physical
database partitions to provide scalability.

Logical database partitions differ from physical database partitions in that logical
database partitions share CPUs, memory, and the disk in an SMP configuration.
A physical database partition on a physical machine does not share CPU, disks,
or memory with other physical database partitions in an MPP configuration.

Consider adding logical database partitions if the machine has multiple CPUs
that can be shared by the logical database partitions. Ensure that there is
sufficient memory and disk space for each logical database partition.

Consider adding physical database partitions to a database environment when a
physical machine does not have the capacity to have a logical database partition
on the same machine. Capacity refers to the number of users and applications
that can concurrently access the database. Capacity is usually determined by the
amount of CPU, memory, and disk available on the machine.

Parallelism
DB2 supports query, utility, and input/output (I/O) parallelism. Parallelism in a
database can dramatically improve performance. DB2 supports intrapartition and
interpartition parallelism.
18 Database Partitioning, Table Partitioning, and MDC for DB2 9

Intrapartition parallelism is the ability to subdivide a single database operation,
such as a query, into subparts, many or all of which can be executed in parallel
within a single database partition.

Interpartition parallelism is the ability to subdivide a single database operation
into smaller parts that can be executed in parallel across multiple database
partitions.

With the DPF feature enabled, DB2 can take advantage of both intrapartition and
interpartition parallelism:

� Query parallelism

DB2 provides two types of query parallelism: interquery and intraquery
parallelism. Interquery parallelism refers to the ability to execute multiple
queries from different applications at the same time. Intraquery parallelism is
the ability to execute multiple parts of a single query by using interpartition
parallelism, intrapartition parallelism, or both.

� Utility parallelism

In a DPF-enabled environment, DB2 utilities can take advantage of both
intrapartition and interpartition parallelism. This enables the utility to run in
parallel on all database partitions.

� I/O parallelism

DB2 can exploit I/O parallelism by simultaneously reading from and writing to
devices. During the planning phases of database design, table space
container placement, as well as the number of containers for the table space,
must be considered. Having multiple containers for a single table space can
dramatically improve I/O performance due to I/O parallelism.

Query optimization
DB2 9’s cost-based query optimizer is DPF-aware. This implies that the query
optimizer uses the system configuration, the database configuration, and the
statistics stored in the system catalogs to generate the most efficient access plan
to satisfy SQL queries across multiple database partitions.

2.1.2 Usage considerations

In this section, we highlight several of the key usage considerations that you
need to take into account when planning to implement multiple database
partitions.
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 19

Database administration
In general, administering a multi-partition database is similar to a single partition
database with a few additional considerations.

Disk
When laying out the physical database on disk, the workload of the database
must be taken into consideration. In general, workloads can be divided into two
broad categories: online transaction processing (OLTP) and Decision Support
Systems (DSS). For OLTP-type workloads, the database needs to support a
great deal of concurrent activity, such as inserts, updates, and deletes. Disks
must be laid out to support this concurrent activity. For DSS-type workloads, the
database must support a small number of large and complex queries as
compared to transactions reading records and many sequential I/O operations.

In a DPF-enabled database environment, each database partition has a set of
transaction logs. Our recommendation is to place the transaction log files on
separate physical disks from the data. This is especially true for an OLTP
environment where transaction logging can be intensive. Each database
partition’s log files must be managed independently of other database partitions.

Memory
The main memory allocation in a DB2 database is for the database buffer pool.
In a DPF-enabled database with multiple database partitions, the buffer pools
are allocated per partition. In a DSS environment, most of the memory must be
allocated for buffer pools and sorting. Decisions have to be made as to the
number of buffer pools to create. A buffer pool is required for each page size that
is used in the database. Having properly tuned buffer pools is important for the
performance of the database, because the buffer pools are primarily a cache for
I/O operations.

Database design
When designing a DPF-enabled database, the database administrator needs to:

� Understand database partitioning
� Select the number of database partitions
� Define the database partition groups
� Define the table space within these partition groups
� Understand distribution maps
� Select distribution keys

Recovery
In a DPF-enabled environment, each database partition must be backed up for
recovery purposes. This includes archiving the transaction log files for each
partition if archival logging is used. The granularity of the backups determines the
recovery time. Decisions must be made about the frequency of the backups, the
20 Database Partitioning, Table Partitioning, and MDC for DB2 9

type of backups (full offline or online, incremental backups, table space backups,
flash copies, and so forth). In large DSS environments, high availability solutions
might need to be considered as well.

Database configuration
In a DPF-enabled environment, each database partition has a database
configuration file. Take this into consideration when you make changes on a
database partition that might need to be made on other database partitions as
well. For example, the LOGPATH needs to be set on each database partition.

System resources
System resources can be broadly divided into CPU, memory, disk, and network
resources. When planning to implement a database with multiple partitions on
the same physical machine, we recommend that the number of database
partitions does not exceed the number of CPUs on the machine. For example, if
the server has four CPUs, there must not be more than four database partitions
on the server. This is to ensure that each database partition has sufficient CPU
resources. Having multiple CPUs per database partition is beneficial whereas
having fewer CPUs per database partition can lead to CPU bottlenecks.

Each database partition requires its own memory resources. By default on
DB2 9, shared memory is used for the communication between logical database
partitions on the same physical machine. This is to improve communications
performance between logical database partitions. For multiple database
partitions, sufficient physical memory must be available to prevent memory
bottlenecks, such as the overcommitment of memory.

Designing the physical layout of the database on disk is critical to the I/O
throughput of the database. In general, table space containers need to be placed
across as many physical disks as possible to gain the benefits of parallelism.
Each database partition has its own transaction logs, and these transaction logs
need to be placed on disks that are separate from the data to prevent I/O
bottlenecks. In a DPF configuration, data is not shared between database
partitions.

2.2 Table partitioning

This section deals with the benefits and the considerations of using table
partitioning.
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 21

2.2.1 Benefits

Several of the benefits of table partitioning are:

� The ability to roll-in and roll-out data easily
� Improved query performance
� Improved performance when archiving or deleting data in larger tables
� Larger table support

Roll-in and roll-out
Roll-in and roll-out are efficient ways of including or removing data in a table. You
use the ALTER TABLE statement with the ATTACH PARTITION or DETACH
PARTITION clause to add or remove a partition to the table. You can reuse the
removed data partition for new data or store the removed data partition as an
archive table. This is particularly useful in a Business Intelligence environment.

Query performance
Query performance is improved because the optimizer is aware of data partitions
and therefore scans only partitions relevant to the query. This also presumes that
the partition key is appropriate for the SQL. This is represented in Figure 2-4.

Figure 2-4 Performance improvement through scan limiting

Table 1

SELECT ...
FROM Table 1
WHERE DATE >= 2001
AND DATE <= 2002

2000 - 2008

Table 1
Scans all
data

2000 - 2008

SELECT ...
FROM Table 1
WHERE DATE >= 2001
AND DATE <= 2002

Non-partitioned Partitioned Table

2000 2001 2002 2003

Scans required partitions

...
22 Database Partitioning, Table Partitioning, and MDC for DB2 9

Flexible index placement
Indexes can now be placed in different table spaces allowing for more granular
control of index placement. Several benefits of this new design include:

� Improved performance for dropping an index and online index creation.

� The ability to use different values for any of the table space characteristics
between each index on the table. For example, different page sizes for each
index might be appropriate to ensure better space utilization.

� Reduced I/O contention providing more efficient concurrent access to the
index data for the table.

� When individual indexes are dropped, space immediately becomes available
to the system without the need for an index reorganization.

� If you choose to perform index reorganization, an individual index can be
reorganized.

Archive and delete
By using the ALTER TABLE statement with the DETACH PARTITION clause,
the removed data partition can be reused for new data or stored as an archive
table. Detaching a partition to remove large amounts of data also avoids logging,
whereas the traditional delete of several million rows produces significant logging
overhead.

Larger table support
Without table partitioning, there is a limit on the size of storage objects and hence
table size. The use of table partitioning allows the table to be split into multiple
storage objects. The maximum table size can effectively be unlimited, because
the maximum number of data partitions is 32767.

Query simplification
In the past, if the table had grown to its limit, a view was required across the
original and subsequent tables to allow a full view of all the data. Table
partitioning negates the need for a UNION ALL view of multiple tables due to the
limits of standard tables. The use of the view means that the view has to be
dropped or created each time that a new table was added or deleted.

A depiction of a view over multiple tables to increase table size is in Figure 2-5 on
page 24. If you modify the view (VIEW1), the view must be dropped and
recreated with tables added or removed as required. During this period of

Note: Both System-Managed Space (SMS) table spaces and
Database-Managed Space (DMS) table spaces support the use of indexes in
a different location than the table.
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 23

modification, the view is unavailable. After you have recreated the view,
authorizations must again be made to match the previous authorizations.

Figure 2-5 View over multiple tables to increase table size

You can achieve the same result by using table partitioning as shown in
Figure 2-6 on page 25. In the case of the partitioned table, a partition can be
detached, attached, or added with minimal impact.

View 1

TableTable
11

TableTable
22

TableTable
33

CREATE VIEW View 1
AS SELECT ... FROM Table 1
UNION ALL SELECT ... FROM Table 2
UNION ALL SELECT ... FROM Table 3
24 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 2-6 Large table achieved by using table partitioning

2.2.2 Usage considerations

Here, we discuss several of the subjects that you need to consider when using
table partitioning.

Locking
When attaching or detaching a partition, applications need to acquire appropriate
locks on the partitioned table and the associated table. The application needs to
obtain the table lock first and then acquire data partition locks as dictated by the
data accessed. Access methods and isolation levels might require locking of
data partitions that are not in the result set. When these data partition locks are
acquired, they might be held as long as the table lock. For example, a cursor
stability (CS) scan over an index might keep the locks on previously accessed
data partitions to reduce the costs of reacquiring the data partition lock if that
data partition is referenced in subsequent keys. The data partition lock also
carries the cost of ensuring access to the table spaces. For non-partitioned
tables, table space access is handled by the table lock. Therefore, data partition
locking occurs even if there is an exclusive or share lock at the table level for a
partitioned table.

Finer granularity allows one transaction to have exclusive access to a particular
data partition and avoid row locking while other transactions are able to access
other data partitions. This can be a result of the plan chosen for a mass update or

PartitionPartition
11

Partition Partition
22

PartitionPartition
33

Table space1 Table space 2 Table space 3

Table 1
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 25

due to an escalation of locks to the data partition level. The table lock for many
access methods is normally an intent lock, even if the data partitions are locked
in share or exclusive. This allows for increased concurrency. However, if
non-intent locks are required at the data partition level and the plan indicates that
all data partitions can be accessed, a non-intent lock might be chosen at the
table level to prevent deadlocks between data partition locks from concurrent
transactions.

Administration
There is additional administration required above that of a single non-partitioned
table. The range partitioning clauses and the table space options for table
partitions, indexes, or large object placement must be considered when creating
a table. When attaching a data partition, you must manage the content of the
incoming table so that it complies with the range specifications. If data exists in
the incoming table that does not fit within the range boundary, you receive an
error message to that effect.

System resources
A partitioned table usually has more than one partition. We advise you always to
carefully consider the table space usage and file system structures in this
situation. We discuss optimizing the layout of table spaces and the underlying
disk structure in Chapter 4, “Table partitioning” on page 125.

Replication
In DB2 9.1, replication does not yet support source tables that are partitioned by
range (using the PARTITION BY clause of the CREATE TABLE statement).

Data type and table type
The following data type or special table types are not supported by the table
partitioning feature at the time of writing this book:

� Partitioned tables cannot contain XML columns.

� DETACH from the parent table in an enforced referential integrity (RI)
relationship is not allowed.

� Certain special types of tables cannot be table-partitioned:

– Staging tables for materialized query tables (MQTs)
– Defined global temporary tables
– Exception tables
26 Database Partitioning, Table Partitioning, and MDC for DB2 9

2.3 Multi-dimensional clustering

In this section, we present the benefits and usage considerations for using
multi-dimensional clustering (MDC) on a table.

2.3.1 Benefits

The primary benefit of MDC is query performance. In addition, the benefits
include:

� Reduced logging
� Reduced table maintenance
� Reduced application dependence on clustering index structure

Query performance
MDC tables can show significant performance improvements for queries using
the dimension columns in the WHERE, GROUP BY, and ORDER BY clauses.
The improvement is influenced by a number of factors:

� Dimension columns are usually not row-level index columns.

Because dimension columns must be columns with low cardinality, they are
not the columns that are normally placed at the start of a row-level index.
They might not even be included in row-level indexes. This means that the
predicates on these columns are index-SARGable (compared after the index
record had been read but before the data row is read) at best, and probably
only data-SARGable (compared after the data is read). With the dimension
block indexes, however, the dimension columns are resolved as index
start-stop keys, which means the blocks are selected before any
index-SARGable or data-SARGable processing occurs.

� Dimension block indexes are smaller than their equivalent row-level indexes.

Row-level index entries contain a key value and the list of individual rows that
have that key value. Dimension block index entries contain a key value and a
list of blocks (extents) where all the rows in the extent contain that key value.

� Block index scans provide clustered data access and block prefetching.

Because the data is clustered by the dimension column values, all the rows in
the fetched blocks pass the predicates for the dimension columns. This
means that, compared to a non-clustered table, a higher percentage of the
rows in the fetched blocks are selected. Fewer blocks have to be read to find
all qualifying rows. This means less I/O, which translates into improved query
performance.
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 27

Reduced logging
There is no update of the dimension block indexes on a table insert unless there
is no space available in a block with the necessary dimension column values.
This results in fewer log entries than when the table has row-level indexes, which
are updated on every insert.

When performing a mass delete on an MDC table by specifying a WHERE
clause containing only dimension columns (resulting in the deletion of entire
cells), less data is logged than on a non-MDC table because only a few bytes in
the blocks of each deleted cell are updated. Logging individual deleted rows in
this case is unnecessary.

Reduced table maintenance
Because blocks in MDC tables contain only rows with identical values for the
dimension columns, every row inserted is guaranteed to be clustered
appropriately. This means that, unlike a table with a clustering index, the
clustering effect remains as strong when the table has been heavily updated as
when it was first loaded. Table reorganizations to recluster the data are totally
unnecessary.

Reduced application dependence on index structures
Because the dimensions in an MDC table are indexed separately, the application
does not need to reference them in a specific order for optimum usage. When the
table has a multi-column clustering index, in comparison, the application needs
to reference the columns at the beginning of the index to use it optimally.

2.3.2 Usage considerations

If you think your database application can benefit from using MDC on some of
the tables, be sure that you consider:

� Is the application primarily for OLTP (transaction processing) or DSS (data
warehouse/decision support)?

Although MDC is suitable for both environments, the DSS environment
probably realizes greater performance gains, because the volume of data
processed is generally larger and queries are expected to be long-running.
MDC is particularly effective in that environment, because it improves data
filtering and can reduce the amount of I/O that is required to satisfy queries.

The OLTP environment, alternatively, normally is characterized by intensive
update activity and rapid query response. MDC can improve query response
times, but it can impact update activity when the value in a dimension column
is changed. In that case, the row must be removed from the cell in which it
28 Database Partitioning, Table Partitioning, and MDC for DB2 9

currently resides and placed in a suitable cell. This might involve creating a
new cell and updating the dimension indexes.

� Is sufficient database space available?

An MDC table takes more space than the same table without MDC. In
addition, new (dimension) indexes are created.

� Is adequate design time available?

To design an MDC table properly, you must analyze the SQL that is used to
query the table. Improper design leads to tables with large percentages of
wasted space, resulting in much larger space requirements.

2.4 Combining usage

Database partitioning, table partitioning, and MDC are compatible and
complementary to each other. When combining two or all three partitioning
technologies in your database design, you can take advantage of each
technology. You can create a data-partitioned table in a Database Partitioning
Feature (DPF) environment to benefit from the parallelism. MQTs work well on
table-partitioned tables. In conjunction with table partitioning, DB2 has made
improvements to SET INTEGRITY so that maintenance of MQTs can be
accomplished without interfering with applications accessing the base tables
concurrently. Utilities, such as LOAD and REORG, work on partitioned tables.
The considerations of each technology discussed in this chapter apply when
combining the usage of these DB2 partitioning technologies.

One monolithic table
When the data is stored in a single large table, many business intelligence style
queries read most of the table as shown in Figure 2-7 on page 30. In this
illustration, the query is looking for “blue triangles.” Even if an appropriate index is
created in the table, each I/O can pick up many unrelated records that happen to
reside on the same page. Because DPF is not used, only one CPU is utilized for
much of the processing done by a query.
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 29

Figure 2-7 Data stored in one monolithic table

Using the database partitioning feature
With DPF, data is distributed by hash into different database partitions. You can
take the advantage of the query parallelism provided by DB2 DPF. This work
now can be attacked on all nodes in parallel. See Figure 2-8 on page 31.

QueryQuery
30 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 2-8 Data distributed by hash

Using database and table partitioning
With table partitioning, all data in the same user-defined range is consolidated in
the same data partition. The database can read just the appropriate partition.
Figure 2-9 on page 32 illustrates only three ranges, but real tables can have
dozens or hundreds of data partitions. Table partitioning yields a significant
savings in I/O for many business intelligence style queries.

P 1 P 2 P 3
QueryQueryQueryQuery QueryQuery
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 31

Figure 2-9 Using both database and table partitioning

Using database partitioning, table partitioning, and MDC
You can use MDC to further cluster the data by additional attributes. By
combining these technologies, even less I/O is performed to retrieve the records
of interest. Plus, table partitioning enables easy roll-in and roll-out of data. See
Figure 2-10 on page 33.

P 1

Jan

Feb

Mar

P 2 P 3
QueryQuery QueryQuery QueryQuery
32 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 2-10 Using database partitioning, table partitioning, and MDC

P 1

Jan

Feb

Mar

P 2 P 3
QueryQuery QueryQuery QueryQuery
 Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC 33

34 Database Partitioning, Table Partitioning, and MDC for DB2 9

Chapter 3. Database partitioning

In this chapter, we describe the Database Partitioning Feature (DPF) of DB2. We
begin by discussing the hardware, software, and memory requirements. We
follow with a discussion about planning and implementing a database partitioning
environment. Finally, we discuss the administrative aspects of a partitioned
environment and best practices.

In this chapter, we discuss the following subjects:

� Requirements

� Planning considerations

� Implementing DPF on UNIX and Linux

� Implementing DPF on Windows

� Administration and management

� Using Materialized Query Tables to speed up performance in a DPF
environment

� Best practices

3

© Copyright IBM Corp. 2007. All rights reserved. 35

3.1 Requirements

This section describes the operating systems and hardware supported by DB2 9
together with the minimum memory requirements for running DB2.

3.1.1 Supported operating systems and hardware

In Table 3-1, we summarize the supported operating systems and hardware
requirements to install and run DB2 9.

Table 3-1 Supported operating systems and hardware platforms for DB2 9

Operating
System

Operating System Version Hardware

AIX 5.2 with 64-bit AIX kernel eServer™ pSeries®
IBM System p™

5.3 with 64-bit AIX kernel

HP-UX 11iv2 (11.23.0505) PA-RISC (PA-8x00)-based HP
9000, Series 700, and Series
800 systems
Itanium®-based HP Integrity
Series systems

Linux Novell Open Enterprise Server 9 with
2.6.5 kernel

x86

Red Hat Enterprise Linux (RHEL) 4
with 2.6.9 kernel

x86
x86_64
IA64
PPC 64 (POWER™)
s390x (zSeries®)

SUSE Linux Enterprise Server
(SLES) 9 with 2.6.9 kernel

Solaris™ 9 with 64-bit kernel and patches
111711-12 and 111712-12

UltraSPARC

10 UltraSPARC or x86-64
(EM64T or AMD64)
36 Database Partitioning, Table Partitioning, and MDC for DB2 9

3.1.2 Minimum memory requirements

At a minimum, a DB2 database system requires 256 MB of RAM. For a system
running just DB2 and the DB2 GUI tools, a minimum of 512 MB of RAM is
required. However, one GB of RAM is recommended for improved performance.
These requirements do not include any additional memory requirements for other
software that is running on the system.

When determining memory requirements, be aware of the following:

� DB2 products that run on HP-UX Version 11i V2 (B.11.23) for Itanium-based
systems require 512 MB of RAM at a minimum.

� For DB2 client support, these memory requirements are for a base of five
concurrent client connections. You need an additional 16 MB of RAM per five
client connections.

� Memory requirements are affected by the size and complexity of your
database system, as well as by the extent of database activity and the
number of clients accessing your system.

3.2 Planning considerations

In this section, we discuss several of the important decisions that you must make
when planning a partitioned database environment. Many of the decisions made

Windows XP Professional Edition with Service
Pack (SP) 1 or later

All systems based on Intel® or
AMD processors that are
capable of running the
supported Windows operating
systems (32-bit, x64, and
Itanium-based systems)

XP Professional x64 Edition with SP1
or later

2003 Standard Edition
(32-bit and 64-bit) with SP1 or later

2003 Enterprise Edition
(32-bit and 64-bit) with SP1 or later

2003 Datacenter Edition
(32-bit and 64-bit) with SP1 or later

Vista supported with DB2 9.1 Fix pack
2 or later

Operating
System

Operating System Version Hardware
 Chapter 3. Database partitioning 37

during the planning stages require an understanding of the machine
configuration in the environment, storage that is available, raw data sizes, and
the expected workload.

3.2.1 Deciding on the number of database partitions

DB2 supports up to a maximum of 1000 partitions. When trying to determine the
number of database partitions to use, consider:

� The total amount of data under each partition

This must not be too high to improve the parallelism of partition-wide
operations, such as backups. Many factors are involved when deciding how
much data to have per database partition, such as the complexity of the
queries, response time expectations, and other application characteristics.

� The amount of CPU, memory, and disk available

A minimum of one CPU needs to be available per database partition. If the
environment is expected to support a large number of concurrent queries,
consider having more CPUs and memory per database partition. In general,
consider more CPUs and memory if you plan to run 20-30 concurrent queries.

� Workload type

The type of workload of your database has to be considered when you define
the physical database layout. For example, if the database is part of a Web
application, typically, its behavior is similar to online transaction processing
(OLTP). There is a great deal of concurrent activity, such as large numbers of
active sessions, simple SQL statements to process, and single row updates.
Also, there is a requirement to perform these tasks in seconds. If the
database is part of a Decision Support System (DSS), there are small
numbers of large and complex query statements, fewer transactions updating
records as compared to transactions reading records, and many sequential
I/O operations.

� The amount of transaction logging that takes place per partition

Transaction logs are created per partition. Log management increases as the
number of partitions increase, for example, archiving and retrieving log files.
For performance reasons, consider placing transaction log files on your
fastest disks that are independent of your data.

� The largest table size under each partition

This must not be too high. There is an architectural limit per partition of 64 GB
for 4 K page size; 128 GB for 8 K page size; 256 GB for 16 K page size; and
512 GB for 32 K page size. If you determine that the architectural limits might
be a problem, consider adding more database partitions to the environment
during the planning phase.
38 Database Partitioning, Table Partitioning, and MDC for DB2 9

� The time required for recovery

In general, the more data under each database partition, the longer the
recovery times. In a partitioned database environment, it is possible to
recover some database partitions independently of others.

� The time available for batch jobs and maintenance

Queries and utilities in DB2 can take advantage of parallelism. In general, as
the number of database partitions increase, so does the utility parallelism.

3.2.2 Logical and physical database partitions

When planning to implement a multi-partition database system, consider the
types of database partitions that you use. In general, the decision between
logical partitions and physical partitions is based on the hardware that is
available or will be available for the database. If you plan to use a large
symmetric multiprocessor (SMP) machine, consider implementing a shared
everything configuration and using logical database partitions. If multiple physical
machines are available, such as a massively parallel processing (MPP)
configuration, consider using a shared nothing architecture and physical
partitions. If you plan to use multiple physical SMP machines, consider using
both physical and logical partitions.

3.2.3 Partition groups

A partition group is a collection of one or more database partitions. In a single
partition environment, a partition group is not of concern. Table spaces for a
database are created in a partition group. By default, there are three partition
groups created when a database is created:

� IBMCATGROUP
� IBMDEFAULTGROUP
� IBMTEMPGROUP

You create the IBMCATGROUP partition group when you issue the CREATE
DATABASE statement and it contains the system catalog table space
(SYSCATSPACE) together with the system catalog tables. The IBMCATGROUP
partition group spans only the catalog partition and cannot be altered or dropped.

The IBMDEFAULTGROUP partition group spans all the database partitions, and
it is the default group for the CREATE TABLESPACE statement. By default, the
USERSPACE1 table space is created in the IBMDEFAULTGROUP partition
group. The IBMDEFAULTGROUP partition group is a system object and cannot
be altered or dropped.
 Chapter 3. Database partitioning 39

The IBMTEMPGROUP partition group spans all the database partitions and
contains the TEMPSPACE1 table space. The IBMTEMPGROUP partition group
is a system object and cannot be altered or dropped.

In general, when designing the database, place large tables in partition groups
that span all or most of the partitions in order to take advantage of the underlying
hardware and the distribution of the data on each partition. Place small tables in
a partition group that spans one database partition, except when you want to
take advantage of collocation with a larger table, which requires both tables to be
in the same partition group.

Consider separating OLPT-type workload data into partition groups that span
one partition. Place DSS-type workload data across multiple partitions.

3.2.4 Distribution maps and distribution keys

Each partition group has a distribution map that is created when the partition
group is created. The distribution map is used by the database manager to find
the data.

A distribution key is a column (or a group of columns) from a table that the
database manager uses to determine how data is distributed between the
partitions, that is, the database partition where the data is stored. The distribution
key is specified with the CREATE TABLE statement.

When a row is inserted into a table, DB2 uses a hashing algorithm on the
distribution key to determine on which partition to store the row of data by using
the distribution map.

Choosing a good distribution key is important for the even distribution of data
across partitions and maximizing the use of collocated joins. Collocation between
joining tables means that you must have the matching rows of the joining tables
on the same database partition. This avoids the database manager from
shipping rows between partitions.

Selecting distribution keys
To choose a good distribution key candidate, consider the following rules:

� Frequently joined columns.

� Columns that have a high proportion of different values to ensure an even
distribution of rows across all database partitions in the database partition
group.

� Integer columns are more efficient than character columns, which are more
efficient than decimal.
40 Database Partitioning, Table Partitioning, and MDC for DB2 9

� Equijoin columns. An equijoin is a join operation in which the join condition
has the form expression = expression.

� Use the smallest number of columns possible.

Having an inappropriate distribution key can cause uneven data distribution. This
can cause the database manager to ship large amounts of rows between
partitions.

3.2.5 Table spaces and containers

Table spaces are created in partition groups. Tables are created in table spaces.
If a table needs to span multiple partitions, it must be created in a table space
that spans multiple database partitions. In general, small tables must be created
in table spaces that span one partition. A table with approximately 100 000 rows
or about 20 MB in size is considered to be small. Medium-sized tables must be
placed in table spaces that do not span too many partitions.

Containers store the data from table spaces onto disk. If there are many
available disks on the system, consider creating each table space container on a
single disk; otherwise, spread the containers across all the disks. In general, the
more disks per table space, the better the performance.

If a Database-Managed Space (DMS) table space is defined by using device
containers, it does not use the operating system file system caching. File
containers for DMS table spaces use file system caching. On AIX, in either case,
it can be beneficial to tune down the file system caching to avoid double buffering
of data in the file system cache and the buffer pool.

The general rules to optimize table scans are:

� Without RAID:

– Extent size needs to be any of the available sizes: 32, 64, 128 and so on.
It is best to be in at least the 128K or 256K range.

– Prefetch size must be the number of containers (that is, the number of
disks) multiplied by the extent size.

� With RAID:

– Extent size must be a multiple of the RAID stripe size.

– Prefetch size needs to be the number of disk multiplied by the RAID stripe
size and a multiple of the extent size.

This can be limiting if the number of disks is a prime number. In this case,
your only choices are extent size = RAID stripe size or extent size =
(number of disks x RAID stripe size), which can easily be too big.
 Chapter 3. Database partitioning 41

3.2.6 Sizing the tables

Knowing the size of your tables is important to determine how many database
partitions you might need. For example, for a table space with a 4 KB page size,
the maximum size of a table is 64 GB per database partition. To allow for larger
tables, more database partitions can be added.

We explain how to size tables by using an example of a large partitioned
database environment. We used a two p690 (32-way/128 GB memory)
environment to calculate the table sizes.

Figure 3-1 details the estimated table sizes that we used in our example to
illustrate sizing tables.

Figure 3-1 Estimated table sizes

The descriptions of the columns in Figure 3-1are:

� Row count: The number of rows in the table

� Row length: The sum of the byte counts of all columns in the table

� Total size: Total size = Row count x Row length

� Size/SMP: Total size/number of physical machines

In this example, we used two p690 machines.

� Size/data partition (DP): (Size/ SMP)/number of database partitions per
machine

Based on the table size information, we used 32 database partitions on each
machine for a total of 64 database partitions.
42 Database Partitioning, Table Partitioning, and MDC for DB2 9

3.2.7 Buffer pools

In a DPF-enabled environment, buffer pools are created per partition. By default,
if no partition groups are specified during the CREATE BUFFERPOOL
statement, the buffer pool is created on all database partitions. Buffer pools can
be created using partition groups to identify on which partitions to create the
buffer pools.

When creating table spaces by using the CREATE TABLESPACE statement, you
can specify a buffer pool to be used by the tables in the table space. The
database partition group must be defined for the buffer pool. If no buffer pool is
specified during the CREATE TABLESPACE statement, the default
IBMDEFAULTBP is used.

Buffer pool allocation can have a profound effect on the performance of the
database. When assigning buffer pools to table spaces, consider placing table
spaces that have sequential I/O patterns in separate buffer pools from those
table spaces that have random I/O patterns.

Consider the following general guidelines for creating buffer pools:

� For DSS workloads, create a buffer pool dedicated to the temporary table
spaces. I/O in this environment tends to be mostly sequential and benefits
DSS workloads.

� Create a buffer pool for table spaces in which the I/O is largely random, that
is, there is not much prefetching or asynchronous I/O activity.

� Create a dedicated buffer pool for OLTP workloads where the tables are
frequently read.

� Consider a buffer pool for indexes of tables that are frequently accessed via
indexes.

� System catalog tables usually have random I/O patterns, therefore, consider
creating a dedicated buffer pool for this table space.

� A large table that is frequently scanned completely can potentially flush out
the buffer pool every time that it is scanned. Consider using a separate table
space for this table and assign a small buffer pool to it, which saves memory
that you can use for other buffer pools.

3.2.8 Catalog partition

The catalog partition in a DPF environment is the partition where the system
catalog tables are created. The catalog partition is created on the partition where
the CREATE DATABASE statement is issued. The catalog partition resides in
 Chapter 3. Database partitioning 43

IBMCATGROUP partition group, which contains the SYSCATSPACE table
space. The IBMCATGROUP partition group spans one partition.

By default, the SYSCATSPACE table space is created as a system-managed
(SMS) table space. It can be created as a DMS table space when the CREATE
DATABASE statement is issued.

3.2.9 Coordinator partition

The coordinator partition is the partition where the application runs. If the
application is remote, the coordinator partition is the partition where the
application connects. The coordinator partition can be any partition in the
database. The application can use the SET CURRENT CLIENT statement to
specify to which database partition to connect.

3.2.10 Data placement and table join strategies

In a DPF-enabled environment, consider where data is placed on each database
partition. The location of the data on each partition influences the table join
strategy that the DB2 optimizer considers and uses. The following join strategies
are used by DB2 optimizer in a partitioned database environment:

� Collocated joins

In this join strategy, there is no data movement between partitions. Always try
to use the maximum number of collocated joins so that the database manager
can avoid shipping data between partitions. A collocated join occurs if two
collocated tables are joined using all of the columns in the partitioning key.
Tables are collocated when they satisfy the following requirements:

– The tables must be in same database partition group.

– The distribution keys from both tables must have the same number of
columns.

� Directed joins

In this join strategy, data from a table is directed to another partition to
complete the join. This is the next best join strategy that the query optimizer
considers if collocated joins cannot be used.

Note: The IBMCATGROUP partition group is a system-created object and
cannot be altered by using the ALTER DATABASE PARTITION GROUP
statement.
44 Database Partitioning, Table Partitioning, and MDC for DB2 9

� Broadcast joins

In this join strategy, each row of one table is broadcast to all partitions of the
other table to complete the join. If collocated or directed joins cannot be used
by the query optimizer, broadcast joins are considered by the query optimizer.

3.3 Implementing DPF on UNIX and Linux

In this section, we describe the steps in our examples of implementing a DPF
system in our test environment. Our test environment consisted of a 4-way
System p (p690) running AIX 5.3 and DB2 9.1 with fix pack 2. The design of the
database partitions, partition groups, and table spaces of our test system is
graphically illustrated in Figure 3-2.

Figure 3-2 Illustration of our test system

We have a single SMP machine with four logical database partitions. We create
six database partition groups:

� IBMCATGROUP, IBMDEFAULTGROUP, and IBMTEMPGROUP are
DB2-created partition groups when the database is created.

� The partition groups PG1, PG23, and PG123 are user-defined.

SMP Machine

Partition 0 Partition 1 Partition 2 Parition 3

SYSCATSPACE

IBMCATGROUP

IBMDEFAULTGROUP

USERSPACE1

tbsp1

pg1

IBMTEMPGROUP

TEMPSPACE1

pg23

tbsp23

pg123

tbsp123
 Chapter 3. Database partitioning 45

We also have six table spaces:

� Table spaces SYSCATSPACE, USERSPACE1, and TEMPSPACE1 are
created by default by DB2 when the CREATE DATABASE statement is
issued.

� The table spaces TBSP1, TBSP23, and TBSP123 are user-defined.

These are the steps to set up a partitioned database environment:

1. Install DB2 with the database partitioning feature enabled on all the physical
servers.

2. Create an instance.

3. Define database partitions by updating the db2nodes.cfg.

4. Set up inter-partition communications.

5. Create a database on the catalog partition.

6. Create database partition groups.

7. Create table spaces.

8. Create database objects: tables, indexes, and so forth.

9. Load data.

We discuss these steps and the related topics in details in the following sections.

3.3.1 Creating instances and databases

The first step in setting up a partitioned database environment is to install DB2.
You must install DB2 on each physical machine that is going to participate in the
database partition environment.

In our test database environment, we installed DB2 using the db2_install utility,
which is only available on UNIX and Linux. On Windows, DB2 can be installed
using the db2setup utility. Obtain more information about the installation methods
for DB2 on UNIX, Linux, and Windows at the DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.uprun.doc/doc/c0008711.htm

After we successfully installed DB2 on our AIX machine, we proceeded to create
a DB2 instance. In order to create an instance, we need a user ID for the
instance owner. In our case, we created a user called db2inst1, which has a
home directory called /home/db2inst1/.
46 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.uprun.doc/doc/c0008711.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.uprun.doc/doc/c0008711.htm

In our test environment, we created an instance called db2inst1 by using the
db2icrt command. You can obtain more information about the db2icrt
command at the Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0002057.htm

In our test environment, we created the db2inst1 instance as the root user as
shown in Example 3-1.

Example 3-1 Creating an instance by using db2icrt

/opt/IBM/db2/V9.1/instance/db2icrt -u db2inst1 db2inst1
DBI1070I Program db2icrt completed successfully.

3.3.2 Defining database partitions

The DB2 nodes configuration file (db2nodes.cfg) is used to define the database
partitions that participate in a DB2 instance. Before a partitioned database is
created, the partitions need to be defined in the db2nodes.cfg file. There is one
db2nodes.cfg file for each instance. The db2nodes.cfg file is located in the
instance owner’s home directory. It contains one entry for each server
participating in the instance. Ensure that the instance is stopped before updating
the file using a text editor. The db2nodes.cfg file can be updated to add or
remove a server in the DB2 instance. All databases that are created in an
instance use the db2nodes.cfg to specify on which hosts and servers the
database is created. The format of the db2nodes.cfg file on UNIX is:

node number, hostname, logical port, netname, resourcesetname

In our test environment, we decided to use four logical partitions. The
db2nodes.cfg is updated as shown in Example 3-2.

Example 3-2 The db2nodes.cfg file in our test environment

0 Clyde 0
1 Clyde 1
2 Clyde 2
3 Clyde 3

Note: The /home/<instance owner> directory must be a shared directory
when setting up multiple physical machines. Each physical machine shares
this directory by mounting this directory using Network File System (NFS).
 Chapter 3. Database partitioning 47

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0002057.htm

In our example in Example 3-2 on page 47, we have defined four partitions on
the same host, which indicates that these are logical database partitions. The
netname and resourcesetname are optional. If we wanted two physical partitions,
the db2nodes.cfg file looks similar to Example 3-3.

Example 3-3 The db2nodes.cfg file for two physical database partitions

0 ServerA 0
1 ServerB 0

You can obtain more information about the contents of the db2nodes.cfg file at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.uprun.doc/doc/r0006351.htm

3.3.3 Setting up inter-partition communications

In a DPF-enabled environment, each database partition needs to communicate
with all other database partitions. DB2 uses the DB2 Fast Communication
Manager to communicate with other database partitions. To support this
communication, you need to update or create the operating system services file,
hosts file, and .rhost files with the new configuration information.

Services file
During the instance creation, a number of ports, which are equal to the number of
logical nodes that the instance is capable of supporting, are reserved in the
services file.

The ports that are reserved in the services file are used by the DB2 Fast
Communication Manager. The reserved ports have the following format:

DB2_InstanceName
DB2_InstanceName_1
DB2_InstanceName_2
DB2_InstanceName_END

The only mandatory entries are the beginning (DB2_InstanceName) and ending
(DB2_InstanceName_END) ports. The other entries are reserved in the services
file so that other applications do not use these ports.

Note: After you create a database, do not update the db2nodes.cfg file
manually to add or remove servers. Manually updating this file might result in
unexpected errors. Use the ADD/DROP DBPARTITIONNUM statement
instead.
48 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.uprun.doc/doc/r0006351.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.uprun.doc/doc/r0006351.htm

When you install the instance-owning database partition server on the primary
computer, DB2 sets up communication ports. The default range is four ports. The
DB2 Setup wizard attempts to reserve an identical port range when database
partition servers are installed on participating computers. If the port has been
used, the Setup wizard uses the first available port range after 60000. However,
if the port numbers in the participating servers do not match the ports in the
Instance-owning server, you receive communication errors when you start DB2.

On UNIX, the services file is located in the /etc. directory. On Windows, the
services file is located in <drive>:\WINDOWS\system32\drivers\etc directory. An
extract of the services file for our instance in our test environment is shown in
Example 3-4.

Example 3-4 Extract of a services file

DB2_db2inst1 60004/tcp
DB2_db2inst1_1 60005/tcp
DB2_db2inst1_2 60006/tcp
DB2_db2inst1_END 60009/tcp

Hosts file
Another important consideration is the correct definition of the hosts file. The
hosts file is located in the same directory as the services file. In the hosts file, you
must have an entry defining the IP address, server name, and domain name (in a
Windows environment) for each participating server. This ensures the correct
configuration of the additional physical partitions at setup time. Example 3-5
shows a sample hosts file with two entries: one entry corresponds to the
partition-owning server and the other entry corresponds to an additional physical
partition.

Example 3-5 Sample hosts file

Internet Address Hostname # Comments
192.9.200.1 net0sample # ethernet name/address
128.100.0.1 token0sample # token ring name/address
10.2.0.2 x25sample # x.25 name/address

127.0.0.1 loopback localhost # loopback (lo0)
9.43.86.56 Clyde.itsosj.sanjose.ibm.com
...

.rhosts files
In a DPF environment, each database partition server must have the authority to
perform remote commands on all the other database partition servers
participating in an instance. You grant this authority by creating and updating the
 Chapter 3. Database partitioning 49

.rhosts file in the instance owner’s home directory. The .rhosts file has the
following format:

hostname instance_owner_user_name

In our test environment we created our .rhosts file as shown in Example 3-6.

Example 3-6 Contents of our .rhosts file

Clyde db2inst1

3.3.4 Creating database

After you create and configure the instance for multiple database partitions, we
can proceed to create a database. In a DPF environment, you need to issue the
CREATE DATABASE command on the partition where the catalog partition is
located, because this determines the catalog partition.

We create our test database, TESTDB, as shown in Example 3-7.

Example 3-7 Creating a database

db2 CREATE DATABASE testdb

You can obtain more information about the CREATE DATABASE statement at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0001941.htm

Identifying the catalog partition
In a DPF environment, statements, such as the ROLLFORWARD DATABASE
statement, must be issued from the catalog partition. You can locate the catalog
partition by using the LIST DATABASE DIRECTORY command as shown in
Example 3-8.

Example 3-8 Determining the catalog partition

db2 LIST DATABASE DIRECTORY

Database 1 entry:

 Database alias = TESTDB
 Database name = TESTDB
 Local database directory = /home/db2inst1
 Database release level = b.00
 Comment =
50 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0001941.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0001941.htm

 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

The catalog partition can be created on any database partition and does not
have to be database partition 0.

3.3.5 Switching partitions

In a DPF environment, you need to execute several commands on specific
database partitions. For example, the LIST TABLESPACES statement is
partition-specific. In order to switch to a particular partition, follow the sequence
of steps shown in Example 3-9.

Example 3-9 Switching partitions

export DB2NODE=2
db2 terminate
DB20000I The TERMINATE command completed successfully.

Example 3-9 demonstrates switching to partition 2 in our test environment. To
verify that we are on partition 2, we use the VALUES statement with the
CURRENT DBPARTITIONNUM special register as shown in Example 3-10.

Example 3-10 Determining the current database partition

db2 connect to testdb

db2 "values (current dbpartitionnum)"

1

 2

 1 record(s) selected.

The DB2NODE environment variable is used to specify the coordinator database
partition. Before it can be effective, you must issue the TERMINATE statement.
The TERMINATE statement terminates the attachment of the DB2 back-end
process.
 Chapter 3. Database partitioning 51

You can obtain more information about the back-end process and its relationship
to the Command Line Processor (CLP) at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0010412.htm

When issuing DB2 commands to the database using the CLP, be careful to
ensure that you issue the command on the intended database partition.

3.3.6 Adding database partitions

Database partitions can be added to a DPF environment by using the following
commands:

� db2start... ADD DBPARTITIONNUM
� ADD DBPARTITIONNUM

The db2start... ADD DBPARTITIONNUM command starts DB2 and adds a new
partition to an existing instance and database. For example, to add another
partition to our test environment by using db2start, we issued the db2start
command as in Example 3-11.

Example 3-11 Adding a database partition using the db2start command

db2start DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME Clyde PORT 4

04/04/2007 09:00:16 4 0 SQL6075W The Start Database Manager
operation successfully added the node. The node is not active until all
nodes are stopped and started again.

SQL6075W The Start Database Manager operation successfully added the
node. The node is not active until all nodes are stopped and started
again.

Upon successful completion of the command, the new db2nodes.cfg is as shown
in Example 3-12.

Example 3-12 The db2nodes.cfg after successfully adding a database partition

0 Clyde 0
1 Clyde 1
2 Clyde 2
3 Clyde 3
4 Clyde 4
52 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0010412.htm

By default, the TEMPSPACE1 table space is created on the new database
partition as shown in Example 3-13.

Example 3-13 The LIST TABLESPACES statement

db2 LIST TABLESPACES

 Tablespaces for Current Database

 Tablespace ID = 1
 Name = TEMPSPACE1
 Type = System managed space
 Contents = System Temporary data
 State = 0x0000
 Detailed explanation:
 Normal

DB21011I In a partitioned database server environment, only the table
spaces
on the current node are listed.

Alternatively, we can add a new partition as shown in Example 3-14.

Example 3-14 Using the ADD DBPARTITIONNUM command to add a partition

db2 ADD DBPARTITIONNUM

The ADD DBPARTITIONNUM command creates a new empty partition in each
database for the instance. In order for the ADD DBPARTITIONNUM statement to
succeed, the db2nodes.cfg must have the new partition defined and the
statement must be executed on the newly defined partition. Unlike the db2start
DBPARTITIONNUM command, which adds an entry to the db2nodes.cfg file, the
ADD DBPARTITIONNUM statement assumes that the partition is already
defined in the db2nodes.cfg.

3.3.7 Removing database partitions

A database partition can only be removed if the database partition is not in use,
that is, there is no data on the partition. Prior to removing the partition, verify that
the partition can be removed by running the DROP PARTITIONNUM VERIFY
statement. If the partition is in use, use the REDISTRIBUTE DATABASE
PARTITION GROUP statement to redistribute the data to other partitions before
removing the partition.
 Chapter 3. Database partitioning 53

In our example, we want to drop database partition number 4. Take the steps
shown in Example 3-15 to verify if the partition can be removed.

Example 3-15 Verifying if a database partition can be dropped

export DB2NODE=4
db2 TERMINATE
db2 DROP DBPARTITIONNUM VERIFY
SQL6034W Node "4" is not being used by any databases.

We can now proceed to drop the partition by using the db2stop... DROP
DBPARTITIONNUM... command as shown in Example 3-16.

Example 3-16 Dropping a database partition

db2stop DROP DBPARTITIONNUM 4

SQL6076W Warning! This command will remove all database files on the
node for this instance. Before continuing, ensure that there is no
user data on this node by running the DROP NODE VERIFY command.
Do you want to continue ? (y/n)

On successful completion of the db2stop DROP DBPARTITIONNUM command, the
definition for partition 4 is removed from the db2nodes.cfg file, as well as the
configuration files, and so forth.

In our test environment, if we try to drop partition number 3, we get the message
shown in Example 3-17.

Example 3-17 Verifying if a database partition can be dropped

export DB2NODE=3
db2 terminate

DB20000I The TERMINATE command completed successfully.

db2 DROP DBPARTITIONNUM VERIFY

SQL6035W Node "3" is being used by database "TESTDB".

We have to redistribute the data from partition 3 first, before we can drop it.

A partition group can also be dropped by using the ALTER DATABASE
PARTITION GROUP statement.
54 Database Partitioning, Table Partitioning, and MDC for DB2 9

3.3.8 Creating database partition groups

After you have define and create the database partitions, the next step in building
a partitioned database is creating the database partition groups. In our test
environment, we created three database partition groups as shown in
Example 3-18.

Example 3-18 Creating database partition groups

db2 "CREATE DATABASE PARTITION GROUP pg123 ON DBPARTITIONNUMS (1 to 3)"
DB20000I The SQL command completed successfully.

db2 "CREATE DATABASE PARTITION GROUP pg1 ON DBPARTITIONNUM (1)"
DB20000I The SQL command completed successfully.

db2 "CREATE DATABASE PARTITION GROUP pg23 ON DBPARTITIONNUMS (2,3)"
DB20000I The SQL command completed successfully.

Partition group PG123 spans database partitions 1, 2, and 3. Partition group PG1
spans only partition 1. Partition group PG23 spans partitions 2 and 3.

3.3.9 Viewing partition groups

You view existing partition groups in a database by using the LIST DATABASE
PARTITION GROUPS command. The SHOW DETAIL option shows the partition
map ID, partition number, and if the partition is in use as shown in Example 3-19.

Example 3-19 Viewing database partition groups

db2 LIST DATABASE PARTITION GROUPS SHOW DETAIL

DATABASE PARTITION GROUP PMAP_ID DATABASE PARTITION NUMBER IN_USE
---------------------------- ------- --------------------------------
IBMCATGROUP 0 0 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
IBMDEFAULTGROUP 1 3 Y
PG1 4 1 Y
PG123 3 1 Y
PG123 3 2 Y
PG123 3 3 Y
PG23 5 2 Y
PG23 5 3 Y
 Chapter 3. Database partitioning 55

Notice that the IBMTEMPGROUP, which is created by default, does not appear
in the listing.

3.3.10 Redistributing partition groups

You redistribute data in a partition group by using the REDISTRIBUTE
DATABASE PARTITION GROUP statement. Use this statement to achieve
uniform distribution across all partitions, to skew data, or to redistribute data prior
to dropping a database partition. Tables in the IBMCATGROUP and the
IBMTEMPGROUP cannot be redistributed.

After you define a database partition and add it to a partition group by using the
ALTER DATABASE PARTITION GROUP statement, the data can be uniformly
distributed with the UNIFORM keyword on the REDISTRIBUTE DATABASE
PARTITION GROUP statement. In our test environment, we added database
partition 4 and ran the REDISTRIBUTE DATABASE PARTITION GROUP
statement as shown in Example 3-20.

Example 3-20 Redistributing a database partition group

db2 "REDISTRIBUTE DATABASE PARTITION GROUP pg123 UNIFORM"

You can use the REDISTRIBUTE DATABASE PARTITION GROUP statement
with the DISTFILE option if the distribution of the distribution key values is
skewed and you want uniform distribution. In this case, you must specify a
distribution map file and provide it with the DISTFILE option.

In our test environment, we created database partition 4 and assigned it to
partition group PG123. We then redistributed partition group PG123 uniformly to
include partition 4.

If we decide to remove data from partition 4, we first have to redistribute the data
by using the TARGETMAP option of the REDISTRIBUTE DATABASE
PARTITION GROUP statement. The TARGETMAP file specifies how to
distribute the data. In our example, we want to redistribute the data to database
partitions 1, 2, and 3 and exclude partition 4. An extract of our TARGETMAP file
is shown in Example 3-21 on page 57. Use the target map file to indicate the
desired distribution of data across the 4096 hash partitions. In our test
environment, we created the target manually by using a text editor.

Note: The REDISTRIBUTE PARTITION DATABASE GROUP statement
creates a messages file in the <instance home>/sqllib/redist directory.
56 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 3-21 Extract of a TARGETMAP file

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
....
....
....

We use the TARGETMAP option on the REDISTRIBUTE DATABASE
PARTITION GROUP statement as shown in Example 3-21 and specify
pg123.map as our file. The TARGETMAP file pg123.map has 4096 entries in it.

Example 3-22 Redistributing a database partition by using a target map file

db2 "REDISTRIBUTE DATABASE PARTITION GROUP pg123 using TARGETMAP
pg123.map"

DB20000I The REDISTRIBUTE NODEGROUP command completed successfully.

Once the REDISTRIBUTE DATABASE PARTITION GROUP statement
completes successfully, partition group PG123 has no data on partition 4.

DB2 provides a utility called Get Distribution Map (db2gpmap), which gets the
distribution map for the database table or the database partition group from the
catalog partitioned database server. In our test environment, we dumped the
current distribution map for partition group PG123 to the output file pg123.out as
shown in Example 3-23. Option -g specifies the partition group.

Example 3-23 Dumping a distribution map

db2gpmap -d testdb -m pg123.out -g pg123

Connect to testdb.
Successfully connected to database.
Retrieving the partition map ID using nodegroup PG123.
The partition map has been sent to pg123.out.
 Chapter 3. Database partitioning 57

An extract of the file pg123.out is shown in Example 3-24.

Example 3-24 Extract of a distribution map

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
.....
.....

You can obtain more information about the dbgpmap utility at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0011837.htm

3.3.11 Altering database partition groups

You can alter database partition groups to add more database partitions to a
partition group or to drop one or more partitions from a partition group.

Adding a database partition to a database partition group
You can add database partitions to a partition group by using the ALTER
DATABASE PARTITION GROUP... ADD DBPARTITIONNUMS... command.
Before a database partition can be added to a partition group, you must define
the database partition in the db2nodes.cfg file.

In our test environment, we have just defined database partition 4 and want to
add this new database partition to the PG123 partition group as shown in
Example 3-25.

Example 3-25 Adding a database partition

$ db2 "ALTER DATABASE PARTITION GROUP pg123 ADD DBPARTITIONNUMS (4)
WITHOUT TABLESPACES"

SQL1759W Redistribute database partition group is required to change
database partitioning for objects in nodegroup "PG123" to include some
added database partitions or exclude some dropped database partitions.
SQLSTATE=01618

Upon successful completion of the ALTER DATABASE PARTITION GROUP...
ADD statement, we are given a warning message indicating that a redistribute
database partition is required. We can confirm that our new database partition
58 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0011837.htm

has been added to the PG123 partition group by listing the database partition
groups as shown in Example 3-26.

Example 3-26 Viewing database partition groups

db2 LIST DATABASE PARTITION GROUPS SHOW DETAIL

DATABASE PARTITION GROUP PMAP_ID DATABASE PARTITION NUMBER IN_USE
---------------------------- ------- ------------------------------
IBMCATGROUP 0 0 Y
IBMDEFAULTGROUP 1 0 Y
IBMDEFAULTGROUP 1 1 Y
IBMDEFAULTGROUP 1 2 Y
PG1 4 1 Y
PG123 3 1 Y
PG123 3 2 Y
PG123 3 3 Y
PG123 3 4 T
PG23 5 2 Y

Notice that the IN_USE column has a “T” for database partition 4, which we
added to the PG123 partition group. The “T” indicates that the database partition
has been added to the database partition group, but is not yet added to the
distribution map.

The containers for the table spaces in the database partition group have not
been added on this database partition. Table space containers must be added on
the new database partition for each table space in the database partition group.
The value is changed to “A” when containers have successfully been added.

In our test database, we added a container to our table space TBSP123 for
database partition 4. When the container was added, we ran the
REDISTRIBUTE DATABASE PARTITION GROUP statement (Example 3-27) to
complete the process to add the partition.

Example 3-27 Redistributing a database partition group

db2 "REDISTRIBUTE DATABASE PARTITION GROUP pg123 UNIFORM"
DB20000I The REDISTRIBUTE NODEGROUP command completed successfully.

After the command to redistribute completes successfully, the IN_USE status for
partition group pg123 changes to “Y”.
 Chapter 3. Database partitioning 59

Dropping a database partition from a partition group
If you are going to drop a database partition and the database partition has data
on it, you must redistribute the data first before you can drop the database
partition.

In our test environment, partition group PG123 has database partitions 1, 2, 3, and
4 assigned to it. Before we can drop database partition 4, we have to redistribute
any data that exists on it. We achieve this by specifying the TARGETMAP option
of the REDISTRIBUTE DATABASE PARTITION GROUP statement as shown in
Example 3-28.

Example 3-28 Redistributing a database partition group

$ db2 "REDISTRIBUTE DATABASE PARTITION GROUP pg123 using TARGETMAP
pg123.map"

DB20000I The REDISTRIBUTE NODEGROUP command completed successfully.

After the data has been redistributed successfully, the IN_USE flag on the
LIST DATABASE PARTITION GROUP SHOW DETAIL statement for partition
group PG123 on database partition 4 is set to “A”.

We can now proceed to drop database partition 4 from database partition group
PG123 as shown in Example 3-29.

Example 3-29 Dropping a database partition group

db2 "ALTER DATABASE PARTITION GROUP pg123 DROP DBPARTITIONNUM (4)"

SQL20225W The buffer pool operation (DROP) will not take effect until
the next database startup because the buffer pool is in use.
SQLSTATE=01657

In our example, we had a buffer pool assigned to partition group pg123. Upon
successful completion of the ALTER DATABASE PARTION GROUP pg123
DROP DBPARTITIONNUM (4) statement, database partition 4 is no longer
associated to partition group PG123. If we want, we can drop database partition 4
as shown in Example 3-30.

Example 3-30 Verifying and dropping a database partition number

db2 DROP NODE VERIFY

SQL6034W Node "4" is not being used by any databases.

db2stop DROP DBPARTITIONNUM 4
60 Database Partitioning, Table Partitioning, and MDC for DB2 9

SQL6076W Warning! This command will remove all database files on the
node for this instance. Before continuing, ensure that there is no
user data on this node by running the DROP NODE VERIFY command.
Do you want to continue ? (y/n)y

3.3.12 Dropping a database partition group

You can drop a database partition group by using the DROP DATABASE
PARTITION GROUP statement. When a database partition group is dropped, all
objects within the database partition group are dropped as shown in
Example 3-31. The system partition groups IBMDEFAULT GROUP,
IBMTEMPGROUP, and IBMCATGROUP cannot be dropped.

Example 3-31 Dropping a database partition group

db2 "DROP DATABASE PARTITION GROUP pg1"

SQL20225W The buffer pool operation (DROP) will not take effect until
the next database startup because the buffer pool is in use.
SQLSTATE=01657

If a REDISTRIBUTE DATABASE PARTITION statement is executing, the
database partition cannot be dropped. If a database partition group is partially
redistributed, it can be dropped.

3.3.13 Implementing buffer pools

In a partitioned database environment, a default buffer pool is created for each
partition unless database partition group is specified. If a partition group is
specified, the buffer pool is only created in that partition group. You can view
details about buffer pools in a database by querying the
SYSCAT.BUFFERPOOLS system catalog table.

Creating buffer pools
You create buffer pools by using the CREATE BUFFERPOOL statement. There
must be at least one buffer pool for each page size used in the database. The
page size of the buffer pool cannot be altered after the buffer pool is created.

In our test environment, for illustration purposes, we have decided to create four
buffer pools with four different page sizes and assign them to partition groups as
shown in Example 3-32 on page 62. Each buffer pool is approximately 250 MB in
size.
 Chapter 3. Database partitioning 61

Example 3-32 Creating buffer pools

db2 CREATE BUFFERPOOL bp0 IMMEDIATE DATABASE PARTITION GROUP
ibmcatgroup SIZE 62500 PAGESIZE 4K;

db2 CREATE BUFFERPOOL bp1 IMMEDIATE DATABASE PARTITION GROUP pg1 SIZE
31250 PAGESIZE 8K;

db2 CREATE BUFFERPOOL bp23 IMMEDIATE DATABASE PARTITION GROUP pg23 SIZE
15625 PAGESIZE 16K;

db2 CREATE BUFFERPOOL bp123 DEFERRED DATABASE PARTITION GROUP pg123
SIZE 7812 PAGESIZE 32K;

Altering a buffer pool
You can alter an existing buffer pool by using the ALTER BUFFERPOOL
statement. After a buffer pool is created, you can:

� Alter the buffer pool to change its size
� Add the buffer pool to a new database partition group
� Enable or disable automatic sizing for the buffer pool
� Change the block area of the buffer pool

In our test environment, we changed the size of BP0 to AUTOMATIC as shown in
Example 3-33. The keyword AUTOMATIC enables automatic sizing of the buffer
pool based on workload requirements.

Example 3-33 Altering a buffer pool

db2 "ALTER BUFFERPOOL bp0 IMMEDIATE SIZE AUTOMATIC"
DB20000I The SQL command completed successfully.

Dropping a buffer pool
You can drop an existing buffer by using the DROP BUFFERPOOL statement. In
our test environment, we dropped buffer pool BP1234 as shown in Example 3-34
on page 63. The default buffer pool that is created, IBMDEFAULTBP, cannot be
dropped, because it is a system object.

Note: The page size of a buffer pool cannot be altered. You must create a
new buffer pool of the page size that you want.
62 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 3-34 Dropping a buffer pool

db2 "DROP BUFFERPOOL bp1234"
DB20000I The SQL command completed successfully.

3.3.14 Implementing table spaces

In this section, we demonstrate creating, viewing, and altering table spaces.

Creating a table space
The CREATE TABLESPACE statement defines a new table space within the
database and assigns containers to the table space. The table space can be
created as a LARGE, REGULAR, SYSTEM TEMPORARY, or USER
TEMPORARY table space. In a DPF environment, table spaces are created in
partition groups. If no partition group is specified in the CREATE TABLESPACE
statement, by default, REGULAR, LARGE, and USER TEMPORARY table
spaces are created in the IBMDEFAULTGROUP partition group. SYSTEM
TEMPORARY table spaces are created in the IBMTEMPGROUP partition group.

If the type of table space is not specified in the CREATE TABLESPACE
statement, a LARGE table space is created.

Table space containers can be System-Managed Space (SMS) or
Database-Managed Space (DMS). SMS containers are managed by the
operating system and are directories. DMS containers are managed by the
database and can have FILE or DEVICE containers. A table space can be
defined to use AUTOMATIC storage.

In our test environment, we created three database-managed (DMS) table
spaces in different partition groups with a size of 10 GB each and assigned buffer
pools to these table spaces as shown in Example 3-35 on page 64. Each table
space uses FILE containers.

Note: A buffer pool cannot be dropped if it has other objects that depend on it,
such as a table space. In addition, there must be at least one buffer pool per
page size that is used in the database.

Note: SYSTEM TEMPORARY table spaces can only be created in the
IBMTEMPGROUP partition group.
 Chapter 3. Database partitioning 63

Example 3-35 Creating table spaces

db2 "CREATE REGULAR TABLESPACE tbsp123 IN DATABASE PARTITION GROUP pg123
MANAGED BY DATABASE
USING (FILE '/database/dbdisk1/testdb/cont123' 10G) ON DBPARTITIONNUM (1)
USING (FILE '/database/dbdisk2/testdb/cont123' 10G) ON DBPARTITIONNUM (2)
USING (FILE '/database/dbdisk3/testdb/cont123' 10G) ON DBPARTITIONNUM (3)
BUFFERPOOL bp123"

db2 "CREATE REGULAR TABLESPACE tbsp1 IN DATABASE PARTITION GROUP pg1 MANAGED BY
DATABASE
USING (FILE '/database/dbdisk1/testdb/cont1' 10G) ON DBPARTITIONNUM (1)
BUFFERPOOL bp1"

db2 "CREATE REGULAR TABLESPACE tbsp23 IN DATABASE PARTITION GROUP pg23 MANAGED
BY DATABASE
USING (FILE '/database/dbdisk2/testdb/cont23' 10G) ON DBPARTITIONNUM (2)
USING (FILE '/database/dbdisk3/testdb/cont23' 10G) ON DBPARTITIONNUM (3)
BUFFERPOOL bp23"

Viewing table spaces
You can view table spaces in a database by running the LIST TABLESPACES
SHOW DETAIL command as shown in Example 3-36.

Example 3-36 Viewing table spaces

db2 LIST TABLESPACES SHOW DETAIL

Tablespaces for Current Database

 Tablespace ID = 0
 Name = SYSCATSPACE
 Type = Database managed space
 Contents = All permanent data. Regular
 table space.
 State = 0x0000
 Detailed explanation:
 Normal
 Total pages = 16384
 Useable pages = 16380
 Used pages = 11260
 Free pages = 5120
 High water mark (pages) = 11260
 Page size (bytes) = 4096
 Extent size (pages) = 4
 Prefetch size (pages) = 4
 Number of containers = 1
64 Database Partitioning, Table Partitioning, and MDC for DB2 9

Viewing table space containers
You can view containers associated with a table space by running the
LIST TABLESPACE CONTAINERS FOR... statement as shown in Example 3-37.
The statement requires the table space ID to display the containers.

Example 3-37 Viewing table space containers

$ db2 LIST TABLESPACE CONTAINERS FOR 1

 Tablespace Containers for Tablespace 1

 Container ID = 0
 Name =
/home/db2inst1/db2inst1/NODE0000/TESTDB/T0000001/C0000000.TMP
 Type = Path

Altering a table space
You can use the ALTER TABLESPACE statement to alter characteristics and
storage of an existing table space. You can modify characteristics such as the
PREFETCHSIZE, BUFFERPOOL, OVERHEAD, TRANSFERRATE, and file
system caching.

Regular DMS table spaces can be converted to LARGE table spaces.

Depending on the type of table space, containers can be dropped, added,
extended, reduced, or resized.

When containers are added or extended, a rebalance of a table space might
occur. Rebalancing involves moving table space extents from one location to
another in an attempt to keep the data striped within the table space. You can
avoid rebalancing of a table space if you use the BEGIN NEW STRIPE SET
option of the ALTER TABLESPACE statement.

In our test environment, we added an additional FILE container to the DMS table
space TBSP123 after TBSP123 was created as shown in Example 3-38 on page 66.

Note: In a partitioned database server environment, only the table spaces on
the current node are listed.
 Chapter 3. Database partitioning 65

Example 3-38 Altering a table space

db2 ALTER TABLESPACE tbsp123 ADD
(FILE '/database/dbdisk1/testdb/cont1234' 10G) ON DBPARTITIONNUM (4)

Renaming a table space
You can rename a table space by using the RENAME TABLESPACE statement.
In our test environment, we renamed the USERSPACE1 table space as shown in
Example 3-39.

Example 3-39 Renaming a table space

$ db2 "RENAME TABLESPACE userspace1 TO userdata"
DB20000I The SQL command completed successfully.

You can issue the RENAME TABLESPACE statement from any database
partition in a DPF environment even if the table space is not defined on the
partition from where it is issued.

Dropping a table space
You can drop a table space by using the DROP TABLESPACE statement.
Dropping a table space drops all the objects defined in a table space. A table
space cannot be dropped if it has dependencies in another table space. In our
test environment, we dropped table space TBSP1 as shown in Example 3-40.

Example 3-40 Dropping a table space

db2 DROP TABLESPACE tbsp1
DB20000I The SQL command completed successfully.

3.3.15 Implementing tables

In DB2, tables are created in table spaces. In a DPF-enabled environment, if a
table space spans multiple database partitions, the tables created in the table
space span multiple database partitions. A table cannot be created on just
specific partitions if the table space spans multiple partitions. For example, if a
table space spans three database partitions, a table cannot be created on just
two of those three database partitions.

By default, if a table space name is not specified, a table space is assigned in a
round-robin fashion from the list of table spaces that you can see with the LIST
TABLESPACES command.
66 Database Partitioning, Table Partitioning, and MDC for DB2 9

Creating tables
Create tables by using the CREATE TABLE statement. You can store table data,
indexes, and long column data in the same table space or separate them by
using the IN, INDEXES IN, and LONG IN options. In a DPF-enabled
environment, you can specify the distribution key for the table by using the
DISTRIBUTE BY clause. One of the tables in our test database is the LINEITEM
table and it was created in table space TBSP123 with L_ORDERKEY as the
distribution key. Example 3-41 shows the DDL that we used to create the
LINEITEM table.

Example 3-41 DDL to create the lineitem table

CREATE TABLE "DB2INST1"."LINEITEM" (
 "L_ORDERKEY" INTEGER NOT NULL ,
 "L_PARTKEY" INTEGER NOT NULL ,
 "L_SUPPKEY" INTEGER NOT NULL ,
 "L_LINENUMBER" INTEGER NOT NULL ,
 "L_QUANTITY" DECIMAL(15,2) NOT NULL ,
 "L_EXTENDEDPRICE" DECIMAL(15,2) NOT NULL ,
 "L_DISCOUNT" DECIMAL(15,2) NOT NULL ,
 "L_TAX" DECIMAL(15,2) NOT NULL ,
 "L_RETURNFLAG" CHAR(1) NOT NULL ,
 "L_LINESTATUS" CHAR(1) NOT NULL ,
 "L_SHIPDATE" DATE NOT NULL ,
 "L_COMMITDATE" DATE NOT NULL ,
 "L_RECEIPTDATE" DATE NOT NULL ,
 "L_SHIPINSTRUCT" CHAR(25) NOT NULL ,
 "L_SHIPMODE" CHAR(10) NOT NULL ,
 "L_COMMENT" VARCHAR(44) NOT NULL)
 DISTRIBUTE BY HASH("L_ORDERKEY")
 IN "TBSP123" ;

You can obtain more details about the CREATE TABLE statement at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0000927.htm

Altering tables
You can alter tables by using the ALTER TABLE statement.

Several characteristics of a table that you can alter by using the ALTER TABLE
statement are:

� ADD or ALTER columns
� ADD, ATTACH, or DETACH table partitions
� ALTER foreign keys or check constraints
 Chapter 3. Database partitioning 67

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000927.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000927.htm

� DROP keys, columns, constraints, or distribution keys
� ADD security policy

You can obtain more information about the ALTER TABLE statement at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0000888.htm

Renaming tables
You can rename tables by using the RENAME TABLE statement. We can
rename the LINEITEM table in our test database as shown in Example 3-42.

Example 3-42 Renaming a table using the RENAME TABLE statement

db2 "RENAME TABLE lineitem TO lineitems_renamed"
DB20000I The SQL command completed successfully.

You can obtain more information about the RENAME statement at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0000980.htm

Dropping tables
You can drop tables by using the DROP TABLE statement. We can drop the
name table in our test database as shown in Example 3-43.

Example 3-43 Dropping a table

$ db2 "DROP TABLE nation"
DB20000I The SQL command completed successfully.

Viewing tables
View tables in a database by using the LIST TABLES command. In a
DPF-enabled environment, issue the command from any database partition. In
our test example, we can view all the tables for the db2inst1 schema as shown
in Example 3-44.

Example 3-44 Viewing a table with the LIST TABLES command

$ db2 LIST TABLES

Table/View Schema Type Creation time
------------------------------- --------------- ----- --------------
LINEITEM DB2INST1 T
2007-04-10-11.12.27.550965
68 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000888.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000980.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000980.htm

NATION DB2INST1 T
2007-04-09-16.14.34.273300
ORDERS DB2INST1 T
2007-04-09-16.14.55.457627
PART DB2INST1 T
2007-04-09-16.14.45.529928
PARTSUPP DB2INST1 T
2007-04-09-16.14.50.492779
REGION DB2INST1 T
2007-04-09-16.14.43.237286
REGION_MQTR DB2INST1 S
2007-04-18-10.38.51.713419
SUPPLIER DB2INST1 T
2007-04-09-16.14.47.736387

8 record(s) selected.

You can obtain more details about the LIST TABLES command at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0001967.htm

Viewing the current distribution of data in a table
To view the current data distribution, you can run the following SQL statement.
This statement shows you the number of rows per partition that you have in a
table.

SELECT DBPARTITIONNUM(distribution key), COUNT(*)
FROM schema.table
GROUP BY DBPARTITIONNUM(distribution key)
ORDER BY DBPARTITIONNUM(distribution key)

Substitute the appropriate values for schema.table and the distribution key
column. In our test environment, we can determine the distribution of data in the
LINEITEM table as shown in Example 3-45 on page 70. The first column is the
database partition number and the second column is the number of rows for the
LINEITEM table on a database partition. In our example, the LINEITEM table is
fairly evenly distributed.
 Chapter 3. Database partitioning 69

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0001967.htm

Example 3-45 Viewing the current data distribution of a table using SQL

db2 "SELECT dbpartitionnum(l_orderkey), COUNT(*) FROM db2inst1.lineitem
GROUP BY dbpartitionnum(l_orderkey) ORDER BY
dbpartitionnum(l_orderkey)"

1 2
----------- -----------
 1 3995488
 2 4001348
 3 4001160

 3 record(s) selected.

Viewing the distribution map of a table
You can view the current distribution map of a table by using the db2gpmap utility.
DB2 provides a utility called Get Distribution Map (db2gpmap), which gets the
distribution map for the database table or the database partition group from the
catalog partitioned database server. Option -t specifies the table name. In our
test environment, we dumped the current distribution map for the lineitem table
to the output file called lineitem.out as shown in Example 3-46.

Example 3-46 Viewing a distribution map

$ db2gpmap -d testdb -m lineitem.map -t lineitem

Connect to testdb.
Successfully connected to database.
Retrieving the partition map ID using table LINEITEM.
The partition map has been sent to lineitem.map.

An extract of the lineitem.map file:

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
....
....
....
70 Database Partitioning, Table Partitioning, and MDC for DB2 9

3.4 Implementing DPF on Windows

In this section, we look at the DB2 9 Windows installation and at several of the
commands for implementing DPF that are specific to the Windows platform.

3.4.1 Installing DB2 Enterprise 9 on Windows

The first step in setting up a partitioned environment on Windows is to ensure
that your participating servers meet the minimum requirements and are part of a
Windows domain. We recommend the following steps prior to installation:

1. Verify that each computer meets the necessary operating system, memory,
and disk requirements.

2. Ensure that all computers belong to the same Windows domain.

3. Ensure that all computers have consistent time and date settings.

4. Verify that all computers can communicate with each other via TCP/IP.

5. Add a domain user account to the local Administrator group on each
computer.

6. Optionally, create DB2 user accounts for setup.

For more in-depth information about the Windows installation requirements, see
Quick Beginnings for DB2 Servers, GC10-4246, and Getting Started with DB2
Installation and Administration on Linux and Windows, GC10-4247. Information
is also available in the DB2 9 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.uprun.doc/doc/r0025127.htm

Installing the instance owning partition
Here are the steps to install the instance owning partition:

1. The first step is to log on to the server that will be the instance owning server
and start the installation wizard. You can log on with a local administrator ID
or a domain ID that has local administrative rights. However, this user must
have the “Access this computer from the network” advanced user right in
order to successfully complete the installation. Run setup.exe to start the
installation launchpad as shown in Figure 3-3 on page 72.
 Chapter 3. Database partitioning 71

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.uprun.doc/doc/r0025127.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.uprun.doc/doc/r0025127.htm

Figure 3-3 Installation launchpad

2. Run through the installation, selecting options for typical or custom install,
response file creation, and installation path. The wizard prompts you to
specify the user ID and password for the DB2 Administration server (DAS).
The DAS user performs administrative and configuration tasks locally or
remotely on this server and other partitioned database servers. It is important
to have this user under a domain users group to grant access to all
participating database partitions. The account used by the DAS must have
the following advanced user rights:

– Act as part of the operating system.
– Debug programs.
– Create token object.
– Lock pages in memory.
– Log on as a service.
– Increase quotas.
– Replace a process level token.

The DAS account is granted these user rights if the account already exists or
if the installation process creates the account.
72 Database Partitioning, Table Partitioning, and MDC for DB2 9

3. In the “Set up a DB2 instance” window, specify whether to create a new
default DB2 instance or join an existing partitioned environment. Because this
server is our instance owning partition server, we select Create the default
DB2 instance as shown in Figure 3-4.

Figure 3-4 Default instance selection

4. In the “Set up partitioning options for the default DB2 instance” window, select
the type of instance to create. Because we are setting up a multi-partition
environment, we select Multiple-partition instance from the options. See
Figure 3-5 on page 74. Here, we can also specify the number of logical
partitions.

Note: You must ensure that you install DB2 on the same drive on each
participating server. For example, do not install DB2 on the C: drive of the
instance owning database server, on the D: drive of a database partition
server, or on the J: drive of another database partition server. If you install
DB2 on the C: drive of the instance owning database server, install DB2 on
the C: drive of any participating database partition servers.
 Chapter 3. Database partitioning 73

Figure 3-5 Instance type selection

5. In the “Configure DB2 instances” step (Figure 3-6 on page 75), specify the
communications options for the instance. Leaving these as defaults is
sufficient.
74 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 3-6 Instance communications options

6. In the “Set user information for the default DB2 instance” window (Figure 3-7
on page 76), specify an account that the instance uses to start. You can
define a user before starting the installation, or you can have the DB2 Setup
wizard create a new domain user for you. If you want to create a new domain
user by using the DB2 Setup wizard, the account used to perform the
installation must have the authority to create domain users. The instance user
domain account must belong to the local Administrators group on all the
participating servers and is granted the following user rights:

– Act as part of the operating system.
– Debug programs.
– Create token object.
– Increase quotas.
– Log on as a service.
– Replace a process level token.
– Lock pages on memory.
 Chapter 3. Database partitioning 75

Figure 3-7 Instance owning user ID selection

7. The next two windows give you options for setting up the tools catalog and
notification options for e-mail and pager notifications.

8. Next, we are required to specify the operating system security options. This
allows the DB2 binaries to be secured by using NTFS permissions. We
elected to enable OS security.

After this step is complete, you see a summary and the installation completes.

The installation process updates the services file and the db2nodes.cfg file.

Now that we have our instance owning partition setup, we can proceed to set
up an additional physical partition.

Installing additional partitions
The steps to install additional physical partitions are:

1. Start the installation launchpad on the Windows server that will act as an
additional physical partition. To do this, run setup.exe. The installation initially
uses the same steps as the instance-owning partition server; however, we
select the Join an existing partitioned database environment option rather
than Create the default DB2 instance as shown in Figure 3-8 on page 77.
This joins this partition server to an existing partition server environment.
76 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 3-8 Join an existing partitioned environment

2. The next window allows us to add the new partition to an existing partition
server environment. The first step is to select the button next to the
instance-owning server field. This allows you to select the partition server
environment that you want to join as shown in Figure 3-9 on page 78. Select
the instance owning server from the displayed list of servers in the domain
and select OK. In the “Add a new database partition server” window, specify
the user account that the new partition will use. It needs to be the same
domain account used when the instance-owning partition server was set up.
Figure 3-10 on page 78 shows a summary of the options that we have
selected.
 Chapter 3. Database partitioning 77

Figure 3-9 Instance owning partition selection

Figure 3-10 Add a new partition server

3. The next window gives us the option of setting up the operating system
security.

4. The final step, when the installation completes, is to start the new partition.
From the instance owning partition, issue a db2stop. You notice that only one
partition is stopped (the partition on the instance owning server). This is
78 Database Partitioning, Table Partitioning, and MDC for DB2 9

because the new partition is not available until DB2 has been restarted as
shown in Example 3-47.

Example 3-47 Stopping and starting db2

C:\>db2stop
04/05/2007 10:50:13 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.
C:\>db2start
04/05/2007 10:50:19 0 0 SQL1063N DB2START processing was successful.
04/05/2007 10:50:37 1 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

Using db2icrt to create a partitioned instance
To create a partitionable instance on a Windows server where DB2 has already
been installed, you can use the db2icrt command. You must specify the user ID
and Fast Communication Manager (FCM) port range to create a instance that
can be partitioned. Example 3-48 shows the command to create an instance
called DPF.

Example 3-48 Create a partitionable instance

db2icrt -s ese -u db2admin,eliza -r 60001,60005 DPF

Where:

/s Is the instance type. In this case, an Enterprise Server instance.

/u Is the instance owning user ID and password.

/r Is the port range used by the FCM. This facilitates inter-partition
communications.

3.4.2 Working with partitioned databases

Here, we look at several of the commands specific to the Windows platform that
allow you to create and work with database partitions.

db2ncrt
The db2ncrt command allows you to add new logical or physical partitions. The
command creates the necessary Windows service for the new partition and
updates the db2nodes.cfg file on the instance owning machine. After the db2ncrt
command is issued, you must recycle the instance with the db2stop and
db2start commands in order for the new partition to become active. When you
have issued the db2stop, the system only stops the current configured instance,
 Chapter 3. Database partitioning 79

at which point the db2nodes.cfg file on the instance owner is updated with
information for DB2 to communicate with the new partition.

For example, you have a server (server_a) with a single partition instance
configured (DB2). You want to add an additional physical partition server
(server_b). On server_b, you execute the command in Example 3-49.

Example 3-49 db2ncrt command example

db2ncrt /n:1 /u:DOMAIN1\db2admin,eliza /i:DB2 /m:server_b /p:0
/o:server_a

Where:

/n Is the partition number for server_b.

/n Is the partition number for server_b.

/u Is the domain DB2 administrator username and password on
server_b.

/i Is the instance name.

/m Is the name of the server where the partitioned instance is added.

/p Is the logical port used for the database partition server. If it is the
first partition on this server, it must start with port number 0.
The port number cannot exceed the port range reserved for FCM
communications in the x:\windows\system32\drivers\etc\ services.
For example in our case, a range of 4 ports is reserved for the
current instance; therefore, the maximum port number is 3.

/o Is the instance owning server.

db2nchg
The db2nchg command allows you to change the configuration of a database
partition. Options include: selecting a different logical port number or a different
network name for the database partition, changing the TCP/IP host name of the
machine, and moving the database partition from one machine to another. Only
use this command when the database partition is stopped.

Note: Only use db2ncrt if no databases exist in the instance. If you already
have an instance in which a database has already been created, you must
always use the db2start add dbpartitionnum command to create additional
partitions and redistribute your data.
80 Database Partitioning, Table Partitioning, and MDC for DB2 9

db2ndrop
The db2ndrop command drops a partition from an instance that has no
databases. As with the db2nchg command, only use db2ndrop if the database
partition is stopped.

If we want to drop partition 1, we issue the command shown in Example 3-50.

Example 3-50 Using db2ndrop

C:\>db2ndrop /n:1
SQL2808W Node "1" for instance "DB2" has been deleted.

3.4.3 DB2 Remote Command Service

The DB2 Remote Command Service (db2rcmd.exe) automatically handles all
inter-partition administrative communications. Ensure that this service is running
at all times in your partitioned environment and has been configured to start with
the domain user ID that was used to start the partitioned instance.

3.5 Administration and management

In this section, we discuss the partitioned database administration and
management.

3.5.1 DB2 utilities

In this section, we discuss the available DB2 utilities for managing a partitioned
database environment.

db2_all
In a DPF-enabled environment, the db2_all utility is provided to issue
commands remotely to all database partitions in an instance.

Note: If you use db2ndrop to remove a partition when the database still exists
in the instance, you lose the data on that partition. If you want to drop a
database partition from a partition server environment, we recommend using
the db2stop drop dbpartition command in conjunction with data
redistribution. See 3.3.10, “Redistributing partition groups” on page 56 for
further details.
 Chapter 3. Database partitioning 81

In our test environment, if we want to serially update a data configuration on all
four database partitions, we issue the db2_all command as shown in
Example 3-51.

Example 3-51 Using db2_all serially

$ db2_all "db2 UPDATE DB CFG FOR TESTDB USING LOGRETAIN ON"

DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.
Clyde: db2 UPDATE DB CFG ... completed ok

DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.
Clyde: db2 UPDATE DB CFG ... completed ok

DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.
Clyde: db2 UPDATE DB CFG ... completed ok

DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.
Clyde: db2 UPDATE DB CFG ... completed ok

If we want to update the database configuration parameter concurrently, we
place a semicolon (;) in front of the db2 command as shown in Example 3-52.

Example 3-52 Using db2_all in parallel

db2_all ";db2 UPDATE DB CFG FOR TESTDB USING LOGRETAIN ON"

To run a command on just a particular database partition, use the “<<+ <“ option
with db2_all. In our test environment, we can back up just partition 0 as shown
in Example 3-53.

Example 3-53 Using db2_all against a specific partition

db2_all "<<+0< db2 BACKUP DB testdb to /home/db2inst1/BACKUPS"

To run a command on all partitions except one partition, use the “<<- <“ option
with db2_all. In our test environment, we can back up all partitions except
partition 0 as shown in Example 3-54.

Example 3-54 Using db2_all to omit a partition

db2_all "<<-0< db2 BACKUP DB testdb to /home/db2inst1/BACKUPS"
82 Database Partitioning, Table Partitioning, and MDC for DB2 9

When using db2_all, more than one DB2 statement can be issued by separating
each statement with a semicolon (;). For example, to list all the table spaces on
all database partitions, a database connection is needed for the LIST
TABLESPACES command to succeed as shown in Example 3-55.

Example 3-55 Listing table spaces on all partitions

db2_all "db2 CONNECT TO testdb ;db2 LIST TABLESPACES SHOW DETAIL"

If the two commands in our example are not issued together, an error message is
returned by DB2 on each partition as shown in Example 3-56.

Example 3-56 Listing table spaces

db2_all "db2 LIST TABLESPACES SHOW DETAIL"

SQL1024N A database connection does not exist. SQLSTATE=08003
Clyde: db2 LIST TABLESPACES ... completed rc=4
...
...

Database backup
Database backups are taken to protect against the possibility of losing data due
to hardware or software failures or both. A well-rehearsed recovery strategy must
be in place. DB2 provides the backup utility for taking backups.

You can take DB2 backups offline or online. An offline backup is also known as a
cold backup. Offline backups can be taken when there are no users or
applications connected to the database. An offline backup requires that the
database is unavailable to users during the backup. Online backups can be
taken while there is activity against the database and do not require that the
database is unavailable to users and applications.

DB2 backups can be full database backups or table space level backups. These
backups can be taken as incremental or delta backups. The database
transaction logs can also be backed up in the backup image.

DB2 supports taking a backup to disk, Tivoli® Storage Manager (TSM), or an
X/Open Backup Services Application Programmer’s Interface (XBSA). You can
optionally compress DB2 backups by using a compression library to reduce the
size of the backup images.

In a DPF-enabled environment, database backups are taken at a database
partition level, that is, each database partition has to be backed up individually.
Offline backups require the catalog partition to be backed up first.
 Chapter 3. Database partitioning 83

In our test environment, we have four database partitions. For a full database
backup, we have to back up four database partitions. We start by taking a backup
of the catalog partition first, because this is an offline backup as shown in
Example 3-57. After this completes successfully, we can back up the rest of the
partitions.

Example 3-57 Backing up a database

db2_all "<<+0< db2 BACKUP DB testdb to /home/db2inst1/BACKUPS"

Backup successful. The timestamp for this backup image is :
20070409100349

Clyde: db2 BACKUP DB testdb ... completed ok

db2_all "|<<-0< db2 BACKUP DB testdb ONLINE to /home/db2inst1/BACKUPS"
rah: omitting logical node 0

Backup successful. The timestamp for this backup image is :
20070409100510

Clyde: db2 BACKUP DB testdb ... completed ok

...

...

Example 3-58 illustrates an online backup of table space TBSP1.

Example 3-58 Backing up a table space

db2 BACKUP DB TESTDB TABLESPACE tbsp1 ONLINE TO /home/db2inst1/BACKUPS

Monitoring backup
When the DB2 backup utility is executing, you can monitor it by using the
LIST UTILITIES SHOW DETAIL command. In a DPF-enabled environment, this
command only returns information about the database partition where it is
executed. In our test environment, we can monitor the backup utility as shown in
Example 3-59.

Example 3-59 Monitoring backup

export DB2NODE=0
db2 terminate

db2 LIST UTILITIES SHOW DETAIL
84 Database Partitioning, Table Partitioning, and MDC for DB2 9

ID = 5
Type = BACKUP
Database Name = TESTDB
Partition Number = 0
Description = offline db
Start Time = 04/09/2007 10:41:23.587256
State = Executing
Invocation Type = User
Throttling:
 Priority = Unthrottled
Progress Monitoring:
 Estimated Percentage Complete = 0
 Total Work = 47713041 bytes
 Completed Work = 0 bytes
 Start Time = 04/09/2007 10:41:23.598681

Viewing the backup history
Whenever the DB2 BACKUP utility is invoked, an entry is made in the DB2
history file to record the event. You can view the history file for backups in a
database by using the LIST HISTORY BACKUP ALL command as shown in
Example 3-60. In a DPF-enabled environment, the LIST HISTORY command
only returns information about the database partition where it is executed.

Example 3-60 Viewing the backup history

export DB2NODE=0
db2 terminate

db2 LIST HISTORY BACKUP ALL FOR testdb

List History File for testdb

Number of matching file entries = 7

 Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- --- ------------------ ---- --- ------------ ------------ ---------
 B D 20070409094628001 F N S0000000.LOG S0000000.LOG

 Contains 1 tablespace(s):

 00001 TBSP1
 Chapter 3. Database partitioning 85

 Comment: DB2 BACKUP TESTDB OFFLINE
 Start Time: 20070409094628
 End Time: 20070409094629
 Status: A

 EID: 13 Location: /dev/null

Verifying the backup images
DB2 provides the DB2 check backup utility, db2ckbkp, which you can use to
determine the integrity of a backup image. It can also be used to display the
metadata stored in a backup image header. You can only use the db2ckbkp utility
on backup images stored on disk or tape. If the backup image is stored on TSM,
it has to be retrieved to disk first before the utility can be executed.

In our test environment, the integrity of the backup image on partition 1 can be
checked as shown in Example 3-61.

Example 3-61 Verifying a backup image

$ db2ckbkp TESTDB.0.db2inst1.NODE0001.CATN0000.20070409104130.001

[1] Buffers processed: ###

Image Verification Complete - successful.

In a DPF environment, run the db2ckbkp utility on all the backup images, because
there is a backup image for each partition that was backed up.

RESTORE
Use the DB2 RESTORE utility to recover previously DB2-backed up databases
or table spaces after a problem, such as a media or storage failure, power
interruption, or application failure.

The DB2 RESTORE utility can be used to restore databases, table spaces, the
history file, or database transaction logs that have been stored in the backup
image. DB2 restore also supports rebuilding a database using table space
backup images.

DB2 supports restoring from disk, Tivoli Storage Manager (TSM), or an X/Open
Backup Services Application Programmer’s Interface (XBSA).
86 Database Partitioning, Table Partitioning, and MDC for DB2 9

In a DPF-enabled environment, the RESTORE utility has to be performed for
each partition to recover a database or table space. The db2_all utility can be
used to restore the database partitions.

In our test environment, we can restore our entire database as shown in
Example 3-62.

Example 3-62 Restoring all the database partitions

db2_all "<<+0< db2 RESTORE DATABASE testdb FROM /home/db2inst1/BACKUPS
TAKEN AT 20070431234149 INTO testdb REPLACE EXISTING"

db2_all "<<+1< db2 RESTORE DATABASE testdb FROM /home/db2inst1/BACKUPS
TAKEN AT 20070431234427 INTO testdb REPLACE EXISTING"

db2_all "<<+2< db2 RESTORE DATABASE testdb FROM /home/db2inst1/BACKUPS
TAKEN AT 20070431234828 INTO testdb REPLACE EXISTING"

db2_all "<<+3< db2 RESTORE DATABASE testdb FROM /home/db2inst1/BACKUPS
TAKEN AT 20070431235235 INTO testdb REPLACE EXISTING"

DB2 restore is an offline process, unless table spaces are restored, in which
case, the ONLINE keyword can be used. This allows access to the rest of the
database while the specific table spaces are restored.

If a backup that is being restored was taken online, at the end of the restore
process, the database needs to roll forward through the transaction logs before
the database is available.

Monitoring restore
When the DB2 RESTORE utility executes, you can monitor it by using the
LIST UTILITIES SHOW DETAIL command. In a DPF-enabled environment, the
LIST UTILITIES command only returns information about the database partition
where it is executed. In our test environment, we can monitor the restore utility as
shown in Example 3-63 on page 88.

Note: When performing a restore using the db2_all utility, always specify
REPLACE EXISTING and WITHOUT PROMPTING. Otherwise, if there is
prompting, the operation appears to be stopped or in a loop. The db2_all
utility does not support user prompting.
 Chapter 3. Database partitioning 87

Example 3-63 Monitoring restore

db2 LIST UTILITIES SHOW DETAIL

ID = 11
Type = RESTORE
Database Name = TESTDB
Partition Number = 0
Description = db
Start Time = 04/09/2007 12:09:03.058149
State = Executing
Invocation Type = User
Progress Monitoring:
 Completed Work = 67129344 bytes
 Start Time = 04/09/2007 12:09:03.058157

The IMPORT utility
The IMPORT utility inserts data from an external file into a table, typed table
hierachy view, or nickname. You can use the IMPORT utility to append data to a
table, replace data in a table, or create a table and insert data into it when using
the IXF file format.

You can run the IMPORT utility offline by using the ALLOW NO ACCESS
keyword or online by using the ALLOW WRITE ACCESS keyword. The ALLOW
WRITE ACCESS keyword is not supported with the REPLACE_CREATE,
REPLACE, and CREATE keywords of the IMPORT utility.

By default, the IMPORT utility issues a commit at the end of the import. Because
the IMPORT utility issues SQL inserts, each row inserted is logged in the
transaction logs. Inserting large amounts of data can exhaust the transaction
logs. To commit more frequently, use the COMMITCOUNT keyword to specify
the frequency of rows to be committed. In general, the more frequent the
commits for an online import, the greater the concurrency.

By default, the IMPORT utility inserts one row per INSERT statement. Using the
MODIFIED BY COMPOUND=x keyword (where 0<x<=100) allows multiple rows
to be written in each INSERT statement, which can result in better performance.

In a DPF-enabled environment, consider enabling buffered inserts for the
IMPORT utility. You achieve this by rebinding the db2uimpm.bnd package with
the INSERT BUF option as shown in Example 3-64 on page 89.
88 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 3-64 Enabling buffered inserts

db2 BIND db2uimpm.bnd INSERT BUF

LINE MESSAGES FOR db2uimpm.bnd

 SQL0061W The binder is in progress.
 SQL0091N Binding was ended with "0" errors and "0" warnings.

In our test environment, we issued an IMPORT as shown in Example 3-65 to
insert data into the LINEITEM table.

Example 3-65 Using the IMPORT utility

db2 "IMPORT FROM lineitem.tbl OF DEL MODIFIED BY COLDEL| COMPOUND=100
COMMITCOUNT 100000 REPLACE INTO lineitem"

SQL3109N The utility is beginning to load data from file
"lineitem.tbl".

SQL3221W ...Begin COMMIT WORK. Input Record Count = "100000".
....

The EXPORT Utility
You can use the DB2 EXPORT utility to unload data from tables into a varying
number of external file formats. You can specify the data to be exported by a
SELECT statement. Data that is exported by the EXPORT utility can be imported
or loaded by using the IMPORT and LOAD utilities.

In our test environment, we exported the entire LINEITEM table as shown in
Example 3-66.

Example 3-66 Using the EXPORT utility

db2 "EXPORT TO lineitem.del OF DEL SELECT * FROM db2inst1.lineitem"

SQL3104N The Export utility is beginning to export data to file
"lineitem.del".

Note: The IXF file format cannot be used to load or import into a table defined
in a partitioned database environment.
 Chapter 3. Database partitioning 89

The LOAD Utility
The DB2 LOAD utility loads data from a file, named pipe, or tape. Unlike the
IMPORT utility, the LOAD utility does not perform SQL inserts to load the data.
Instead, the LOAD utility copies formatted pages directly into the database. In
general, the LOAD utility performs better than the IMPORT utility.

The LOAD utility does not fire triggers or perform referential or table constraint
checking; it only validates the unique constraints of indexes.

You can run the LOAD utility offline with the ALLOW NO ACCESS keyword or in
read only mode by using the ALLOW READ ACCESS keyword. Only data that
was available in a table prior to the load is accessible. By default, LOAD does not
allow access to the table while it is loaded.

Execute the LOAD utility with the COPY YES/NO or the NONRECOVERABLE
option. The COPY YES specifies that a copy of the data loaded is saved. The
NONRECOVERABLE option of the LOAD utility specifies that you cannot
recover the table being loaded by rollforward during recovery. Example 3-67
illustrates loading data into the LINEITEM table by using the LOAD utility.

Example 3-67 Using the LOAD utility

db2 "LOAD FROM lineitem.tbl OF DEL MODIFIED BY COLDEL| REPLACE INTO
lineitem STATISTICS YES NONRECOVERABLE"

REORG utility
Use the DB2 REORG utility to reorganize a table or an index.

Index reorganization
You can reorganize all indexes defined on a table by rebuilding the index data
into unfragmented, physically contiguous pages. You achieve this by using the
INDEXES ALL FOR TABLE keyword. You can also reorganize a table by a
specific index by using the INDEX keyword. While indexes are reorganized, you
can use the REORG options ALLOW NO ACCESS, ALLOW READ ACCESS, or
ALLOW WRITE ACCESS to the table on which the indexes are reorganized. You
can also use the REORG utility to CONVERT Type 1 indexes to Type 2 indexes.
When the REORG utility is run with the CLEANUP ONLY option, a full
reorganization is not done. The indexes are not rebuilt and any pages freed up
are available for reuse by indexes defined on this table only.

When reorganizing indexes, the amount of sort memory available to sort the
index keys has a significant impact on performance.

In our test environment, we reorganized all the indexes on the LINEITEM table as
shown in Example 3-68 on page 91.
90 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 3-68 Using the REORG utility on indexes

$ db2 "REORG INDEXES ALL FOR TABLE lineitem ALLOW WRITE ACCESS"
DB20000I The REORG command completed successfully.

Table reorganization
When a table is reorganized by using the REORG utility, you can use the INDEX
keyword to reorganize the table according to that index. If the INDEX option is
not specified to the REORG utility and if a clustering index exists on the table, the
data is ordered according to the clustering index.

Table reorganization can be offline or online. When an offline reorganization is
run, the ALLOW NO ACCESS or the ALLOW READ ACCESS keywords can be
specified with the REORG utility. Offline table reorganization is the default and is
the fastest method to reorganize a table. Offline reorganization of a table incurs a
large space requirement, because the entire copy of the table needs to be
rebuilt. An offline reorganization is synchronous.

If there is insufficient space within the table space to hold the table while it is
reorganized, a separate temporary table space must be specified.

In order to run the REORG utility online, you must specify the INPLACE keyword.
The INPLACE option allows user access to the table during a table
reorganization by specifying the ALLOW READ ACCESS or ALLOW WRITE
ACCESS keywords. An INPLACE table reorganization is asynchronous.

In our test environment, we ran an online table reorganization on all the database
partitions as shown in Example 3-69.

Example 3-69 Using the REORG utility on tables

$ db2 "REORG TABLE lineitem INPLACE ALLOW WRITE ACCESS ON ALL
DBPARTITIONNUMS"

DB20000I The REORG command completed successfully.
DB21024I This command is asynchronous and may not be effective
immediately.

Monitoring REORG
You can monitor table reorganizations by using the GET SNAPSHOT FOR
TABLES command. In our test environment, we specified the GLOBAL keyword

Note: DB2 supplies the reorgchk command to assist in determining whether
tables and indexes need to be reorganized.
 Chapter 3. Database partitioning 91

to get a table snapshot of all database partitions as shown in Example 3-70 on
page 92.

Example 3-70 Monitoring the reorg utility

db2 "GET SNAPSHOT FOR TABLES on testdb GLOBAL"

Table Reorg Information:
 Node number = 2
 Reorg Type =
 Reclaiming
 Inplace Table Reorg
 Allow Write Access
 Reorg Index = 0
 Reorg Tablespace = 2
 Start Time = 04/11/2007 10:21:13.214769
 Reorg Phase =
 Max Phase =
 Phase Start Time =
 Status = Started
 Current Counter = 43841
 Max Counter = 138819
 Completion = 0
 End Time =

The RUNSTATS utility
Use the RUNSTATS utility for collecting statistics about the data stored in tables
and indexes. These statistics are stored in the system catalog tables. When
generating access plans, the DB2 query optimizer uses these statistics. Keeping
statistics current is crucial in generating optimal access plans. If tables are
frequently inserted into, updated, or deleted, the RUNSTATS utility needs to be
run more frequently to keep the statistics current.

You can collect statistics on tables, indexes, or both. Collect distribution statistics
for a table by specifying the WITH DISTRIBUTION keyword. You can collect
detailed index statistics by using the FOR DETAILED INDEXES ALL keyword.

You can run the RUNSTATS utility with the ALLOW WRITE ACCESS or the
ALLOW READ ACCESS keywords, which allows access to the table while
statistics are collected on the table.

Use the WITH DISTRIBUTION option when the data is known to have
nonuniform data distribution and the workload is capable of exploiting
nonuniform data distribution statistics.
92 Database Partitioning, Table Partitioning, and MDC for DB2 9

Collect the DETAILED index statistics when the table has multiple unclustered
indexes with varying degrees of clustering or the degree of clustering in an index
is nonuniform among the key values.

In our test environment, we collected detailed and distribution statistics for the
LINEITEM table with write access as shown in Example 3-71.

Example 3-71 Collecting detailed statistics

db2 "RUNSTATS ON TABLE db2inst1.lineitem WITH DISTRIBUTION AND DETAILED
INDEXES ALL ALLOW WRITE ACCESS"

DB20000I The RUNSTATS command completed successfully.

Statistics in a partitioned environment
The DB2 optimizer uses statistics to estimate the size of the intermediate results
and the costs in order to choose an optimum access plan. In a partitioned
environment, the collection of statistics is done on a single partition. It is difficult
to extrapolate certain statistics to the table level. If the table is very small
compared to the number of partitions, the statistics might not reflect the whole
table. It is possible that there are no rows on the partition where the statistics are
collected. Small tables, particularly those with significant skew in the partition key
values, might give the optimizer better information to use during planning if the
tables are placed in a single partition.

Monitoring RUNSTATS
Monitor the RUNSTATS utility by using the LIST UTILITIES command as shown
in Example 3-72.

Example 3-72 Monitoring the RUNSTATS utility

db2 LIST UTILITIES SHOW DETAIL

ID = 13
Type = RUNSTATS
Database Name = TESTDB
Partition Number = 1
Description = DB2INST1.LINEITEM
Start Time = 04/11/2007 11:25:29.175498
State = Executing
Invocation Type = User
Throttling:
 Priority = Unthrottled
 Chapter 3. Database partitioning 93

3.5.2 Monitoring

In this section, we discuss monitoring a partitioned database environment by
using DB2 tools.

Snapshot monitoring
You can use the DB2 snapshot monitor to capture information about the
database and any connected applications at a specific point-in-time. The
snapshot information is stored in internal buffers within DB2. Capture snapshots
by using the GET SNAPSHOT command. The snapshot monitor collects a
“snapshot” or current activities in the database and does not provide historical
information. Snapshot information that is already collected can be cleared by
using the RESET MONITOR command. Table 3-2 is a summary of the scope,
information provided, and use of snapshot monitoring.

Table 3-2 Scope, information provided, and use of snapshot monitors

Snapshot level Information provided Usage

Instance High-level view of the instance � In DPF, FCM information
� Service level information

Database High-level view of the
database

� Buffer pool efficiency
� Sort heap sizing
� Lock contention
� Deadlock occurrence

Table space Details about each table
space, such as containers,
used pages, and free pages.

� DMS space utilization
� Determine most active

table spaces

Table Details about the most active
tables, such as rows read,
rows written, and overflows

� Determine most active
tables during peak periods
in terms of scans and
writes

� Reorganization status of
table

Buffer pool � Details of all of the defined
buffer pools

� Logical and physical reads
and writes

� Asynchronous reads and
writes

� Calculating buffer pool
efficiency for each buffer
pool that is defined
94 Database Partitioning, Table Partitioning, and MDC for DB2 9

Before most snapshot data can be collected at any of the levels, the default
database monitor switches need to be turned on at the instance level. Even
without the monitor switches on, you can collect certain monitor data by default.

In our test environment, we turned on all the monitor switches as shown in
Example 3-73.

Example 3-73 Turning on all the monitor switches

db2 UPDATE DBM CFG USING DFT_MON_BUFPOOL ON
db2 UPDATE DBM CFG USING DFT_MON_LOCK ON
db2 UPDATE DBM CFG USING DFT_MON_SORT ON
db2 UPDATE DBM CFG USING DFT_MON_STMT ON
db2 UPDATE DBM CFG USING DFT_MON_UOW ON
db2 UPDATE DBM CFG USING DFT_MON_TABLE ON

Lock Current locks held in the
database

� Identifying holders of locks
and applications waiting

� Identifying the objects
locked, for example, tables
or indexes

� Identifying the types of
locks held, for example,
exclusive or share locks

Statement � SQL statement text of
dynamic SQL

� Number of statement
compilations and
executions

� Rows read and written by
the statement

� Buffer pool usage per
statement

� Package cache efficiency
� Most active statements
� Indexing opportunities for

statements doing large
table scans

Application Details about each application
connected to the database, for
example, application handle,
status, and so forth

� Determine what an
application is doing

� Determine most active
applications

� Elapsed times of
applications

Note: The DFT_MON_TIMESTAMP monitor switch is turned on by default.

Snapshot level Information provided Usage
 Chapter 3. Database partitioning 95

In a DPF-enabled environment, you can use the GLOBAL keyword to collect
aggregated snapshot data from all database partitions. The instance level
snapshot in a DPF environment provides additional information, such as FCM
information. You can capture a global database manager snapshot as shown in
Example 3-74 on page 96.

Example 3-74 Collecting a global database manager snapshot

db2 GET SNAPSHOT FOR DATABASE MANAGER GLOBAL

 Database Manager Snapshot

Node type = Enterprise Server
Edition with local and remote clients
Instance name = db2inst1
Number of database partitions in DB2 instance = 4
Database manager status = Active

Product name = DB2 v9.1.0.2
Service level = s070210 (U810940)
...
...
Node FCM information corresponds to = 3
Free FCM buffers = 25060
Free FCM buffers low water mark = 25060
Free FCM channels = 12518
Free FCM channels low water mark = 12518
Number of FCM nodes = 4
...
...

You can use the AT DBPARTITIONNUM keyword to collect data at a particular
database partition as shown in Example 3-75.

Example 3-75 Collecting a snapshot at a particular database partition

db2 GET SNAPSHOT FOR LOCKS ON testdb AT DBPARTITIONNUM 3

Database Lock Snapshot

Database name = TESTDB
Database path =
/home/db2inst1/db2inst1/NODE0003/SQL00001/
Input database alias = TESTDB
Locks held = 0
Applications currently connected = 1
96 Database Partitioning, Table Partitioning, and MDC for DB2 9

Agents currently waiting on locks = 0
Snapshot timestamp = 04/11/2007 15:26:40.407832

Application handle = 63
Application ID = *N0.db2inst1.070411200328
Sequence number = 00001
Application name = db2bp
CONNECT Authorization ID = DB2INST1
Application status = Connect Completed
Status change time = 04/11/2007 15:03:40.932614
Application code page = 819
Locks held = 0
Total wait time (ms) = 0

You reset snapshot data by using the RESET MONITOR command. In a
DPF-enabled environment, the monitor can be reset at a particular database
partition with the AT DBPARTITIONNUM keyword or on all database partitions
with the GLOBAL keyword as shown in Example 3-76.

Example 3-76 Resetting the monitor switches

db2 "RESET MONITOR ALL GLOBAL"

DB20000I The RESET MONITOR command completed successfully.

Event monitoring
You can use the DB2 event monitor to collect database monitor information on a
continual basis, which differs from snapshots because the snapshots are taken
at a certain point-in-time. DB2 event monitors are stored in the system catalog
tables. Event monitor data can be collected to pipes, files, or tables. Event
monitors collect data when a specific event, for which the event monitor has
been set up, occurs.

Event monitors do not have any database configuration switches that need to be
turned on before the collection of data. You must define and activate event
monitors in order to use them. By default, the DB2DETAILDEADLOCK event
monitor is defined. Event monitors that are defined can be viewed by querying
the SYSCAT.EVENTMONITORS system catalog table.

To create an event monitor, use the CREATE EVENT MONITOR SQL
statement. Event monitors only collect data when they are activated. To activate
or deactivate an event monitor, use the SET EVENT MONITOR STATE SQL
statement. A state of 0 indicates the event monitor is not activated. A state of 1
indicates the event monitor is activated.
 Chapter 3. Database partitioning 97

In a DPF-enabled environment, you can define an event monitor at a specific
database partition by using the DBPARTITIONNUM keyword, on a partition
where the command is issued from by using the LOCAL keyword (this is the
default), or on all database partitions by using the GLOBAL keyword.

The event monitor creates binary files. You need to use a utility called db2evmon
to format the event monitor binary files to text as shown in Example 3-77. The
db2evmon utility applies to event monitors that write to files or pipes.

Example 3-77 Creating, activating, and formatting the event monitor data

db2 CONNECT TO testdb

db2 "CREATE EVENT MONITOR testevmon FOR CONNECTIONS WRITE TO FILE
'/home/db2inst1/EVMON' ON DBPARTITIONNUM 2"

DB20000I The SQL command completed successfully.

db2 "SET EVENT MONITOR testevmon STATE 1"

DB20000I The SQL command completed successfully.

export DB2NODE=2
db2 terminate
db2evmon -path /home/db2inst1/EVMON

Table 3-3 provides a summary of the scope, the information provided, and the
point at which the event data is collected by the event monitor.

Table 3-3 Event monitor scope, information provided, and data collection time

Event monitor Information provided Collected

Database All database level counters Database deactivation

Connections All application level counters End of connection

Table spaces Counters for the buffer pool,
prefetchers, page cleaners, and
direct I/O for each table space

Database deactivation

Tables Rows read and written for each
table

Database deactivation

Buffer pools Counters for the buffer pool,
prefetchers, page cleaners, and
direct I/O for each buffer pool

Database deactivation
98 Database Partitioning, Table Partitioning, and MDC for DB2 9

DB2 problem determination (db2pd) and monitoring
The utility, db2pd, is a stand-alone utility shipped with the DB2 product. Use
db2pd for monitoring, as well as problem determination. You can execute db2pd in
a command line mode or an interactive mode. The utility db2pd runs very quickly,
because it does not acquire locks or latches and runs outside of the DB2 engine
resources. You can even run db2pd on an engine that is stopped or appears to be
in a loop. Using db2pd gives the user a closer view of the DB2 Engine.

Requirements
The requirements to use db2pd are:

� You must execute the utility on the same physical machine as the instance.
� You can use db2_all, rsh, and so forth to execute remotely.
� The user must have SYSADM authority.
� The user must be the instance owner (for UNIX and Linux only).

You can execute db2pd to collect data at an instance level or a database level.
Instance scope options report information at the instance level. Database scope
options report information at the database level. Using the -alldbs option, several
databases can be active in one instance. All db2pd options have a full descriptive
word, for example, -applications, which can be shortened to a three letter
minimum, such as -app.

Controlling the scope of db2pd
You can use db2pd options to control the scope of the data that is collected:

� Use of the -alldbpartitionnums (-alldbp) option attaches to all database
partitions on this physical machine.

Deadlocks Applications involved in the
deadlocks and locks in contention

Detection of deadlock

Statements � Statement start and stop time
� CPU consumed
� Dynamic SQL statement text
� In DPF, table queue

information

� End of statement
(Single partition)

� End of subsection
(DPF)

Transactions � Unit of work (UOW) start and
stop

� CPU consumption
� Transaction logs used
� Locking information

End of unit of work

Event monitor Information provided Collected
 Chapter 3. Database partitioning 99

� Use of the -dbpartitionnum (-dbp) <num>[,<num>] option attaches to a
database partition (overrides the DB2NODE environment variable).

� Use of the -alldatabases (-alldbs) option attaches to all active databases.

� Use of the -database (-db) <database>,[<database>] attaches to the chosen
databases.

The most common options for db2pd at the instance and database levels are
shown in Table 3-4.

Table 3-4 db2pd scope and options

Scope Options Use

Instance agents � Detailed agent information, such as type,
state, rows read, and rows written

fcm � FCM statistics
� Buffer consumption
� Applications involved in FCM usage

dbmcfg � Database manager configuration

sysplex � Used for DB2 Connect™ products showing
remote connections

utilities � Utilities that are executing and states

osinfo � Detailed operating system (OS) information

Database applications � Details about applications, such as
application handle, PID, current statement
executing, and last statement executed

transactions � Transaction information, such as log space
used, transaction handle, and so forth

bufferpools � Information for all bufferpools and hit ratios
with monitor switch enabled

logs � Transaction log information, such as current
active log, and so forth

locks � Detailed lock information

table spaces � Table space details and statistics

dynamic � Information about dynamic SQL stored in the
dynamic cache

static � Static SQL package information

dbcfg � Displays the database configuration
100 Database Partitioning, Table Partitioning, and MDC for DB2 9

In our test environment, we submitted the db2pd command to list all the
applications on database partition 1, as shown in Example 3-78.

Example 3-78 Using db2pd to list all applications on database partition 1

db2pd -dbp 1 -app -db testdb

Database Partition 1 -- Database TESTDB -- Active -- Up 0 days 00:27:00

Applications:
Address AppHandl [nod-index] NumAgents CoorPid Status
0x0780000000199200 162 [000-00162] 1 0 Unknown

We can use the -alldbp option of db2pd to display information about all database
partitions. Example 3-79 shows how to get lock information.

Example 3-79 Using db2pd to list all locks at the database level

db2pd -alldbp -locks -db testdb

Database Partition 0 -- Database TESTDB -- Active -- Up 0 days 00:31:33

Locks:
Address TranHdl Lockname Type
Mode Sts Owner Dur HoldCount Att ReleaseFlg

Database Partition 1 -- Database TESTDB -- Active -- Up 0 days 00:31:19

Locks:
Address TranHdl Lockname Type
Mode Sts Owner Dur HoldCount Att ReleaseFlg

catalogcache � Information from the catalog cache

tcbstats � Detailed table statistics and information

reorgs � Table reorg information, such as status

recovery � Recovery information, such as crash
recovery and roll forward

storagepaths � Database storage path

activestatements � Information about currently active SQL
statements

Scope Options Use
 Chapter 3. Database partitioning 101

Database Partition 2 -- Database TESTDB -- Active -- Up 0 days 00:31:19

Locks:
Address TranHdl Lockname Type
Mode Sts Owner Dur HoldCount Att ReleaseFlg

Database Partition 3 -- Database TESTDB -- Active -- Up 0 days 00:31:19

Locks:
Address TranHdl Lockname Type
Mode Sts Owner Dur HoldCount Att ReleaseFlg

DB2 EXPLAIN
The DB2 EXPLAIN facility allows you to capture information about the
environment and the access plan chosen by the optimizer for static or dynamic
SQL statements. You can then use this information to tune the SQL statements,
as well as the database manager configuration, to improve the performance of
queries.

DB2 EXPLAIN captures:

� Sequence of operations to process the query

� Cost information

� Predicates and selectivity estimates for each predicate

� Statistics for all objects referenced in the SQL statement at the time that the
EXPLAIN information is captured

The DB2 EXPLAIN facility provides a number of tools to capture, display, and
analyze information about the access plans that the optimizer chooses for SQL
statements. The access plan listed in the EXPLAIN output is based on the
statistics available at the time of statement compilation. For static SQL, this
corresponds to bind and preparation time and might not match the actual runtime
statistics.

Access path information is stored in EXPLAIN tables, which you can query to
retrieve the information that you want. You can use either the GUI tool Visual
Explain or the text-based db2exfmt tool to examine the contents of the EXPLAIN
tables. We only demonstrate the db2exfmt tool in our examples.

EXPLAIN tables can be created by issuing the db2 -tvf EXPLAIN.DDL command,
or by the DB2 Control Center automatically. The EXPLAIN.DDL file is located in
the $HOME/sqllib/misc directory on UNIX and Linux, where $HOME is the home
directory of the DB2 instance owner and is located in C:\Program
Files\IBM\SQLLIB\misc on Windows.
102 Database Partitioning, Table Partitioning, and MDC for DB2 9

SQL statements need to be explained in order to populate the EXPLAIN tables.
After the EXPLAIN tables have been populated, the following command is used
to generate db2exfmt output for a SQL statement:

db2exfmt -d <dbname> -l -s <schema> -o <output file>

Analyzing query access plans in a partitioned environment
This section looks at characteristics of a plan that are relevant to a partitioned
environment. In order to explain several of the concepts that we have discussed
in the previous sections, we use an example based on the TPC-H schema
shown in Example 3-80. This query has a join of six tables with an aggregation.
The db2exfmt tool output that formats the information from the EXPLAIN tables is
shown in Example 3-80, too. The number in parentheses beneath the operator is
the operator number. The number above the operator is the cardinality relevant to
the operation.

Example 3-80 Analyzing a query access plan

SELECT nation, o_year, sum(amount) AS sum_profit
FROM (
 SELECT n_name AS nation, year(o_orderdate) AS o_year,
 l_extendedprice * (1 - l_discount) - ps_supplycost *
 l_quantity AS amount
 FROM tpcd.part, tpcd.supplier, tpcd.lineitem, tpcd.partsupp,
 tpcd.orders, tpcd.nation
 WHERE s_suppkey = l_suppkey
 AND ps_suppkey = l_suppkey
 AND ps_partkey = l_partkey
 AND p_partkey = l_partkey
 AND o_orderkey = l_orderkey
 AND s_nationkey = n_nationkey
 AND p_name LIKE '%coral%'
) AS profit
GROUP BY nation, o_year
ORDER BY nation, o_year DESC

Access Plan:

 Total Cost: 2.99008e+07
 Query Degree: 1

 Rows
 RETURN
 (1)
 |
 225
 GRPBY
 Chapter 3. Database partitioning 103

 (2)
 |
 36000
 MDTQ
 (3)
 |
 225
 GRPBY
 (4)
 |
 225
 TBSCAN
 (5)
 |
 225
 SORT
 (6)
 |
 2.2704e+07
 HSJOIN
 (7)
 /-------------+-------------\
 2.2704e+07 633503
 DTQ HSJOIN
 (8) (18)
 | /------+-----\
 2.2704e+07 633503 25
 HSJOIN TBSCAN BTQ
 (9) (19) (20)
 /----+----\ | |
 5.07707e+07 2.45672e+07 633503 25
 TBSCAN DTQ TABLE: TPCD FETCH
 (10) (11) SUPPLIER (21)
 | | /----+----\
 5.07707e+07 2.45672e+07 25 25
 TABLE: TPCD HSJOIN IXSCAN TABLE: TPCD
 PARTSUPP (12) (22) NATION
 /-------+-------\ |
 9.5221e+07 2.45672e+07 25
 TBSCAN HSJOIN INDEX: TPCD
 (13) (14) N_NK
 | /---+---\
 9.5221e+07 3.80893e+08 1.30986e+08
 TABLE: TPCD TBSCAN BTQ
 ORDERS (15) (16)

| |
3.80893e+08 818664

 TABLE: TPCD TBSCAN
 LINEITEM (17)
104 Database Partitioning, Table Partitioning, and MDC for DB2 9

 |
 1.26927e+07
 TABLE: TPCD
 PART

The two biggest tables, LINEITEM and ORDERS, are partitioned on ORDERKEY. The
query joins these tables on the ORDERKEY. The join (HSJOIN(12)) is collocated
and this is probably good considering the size of data joined.

The PART table is partitioned on PARTKEY, but the LINEITEM table is partitioned on
ORDERKEY. Even though you can direct the LINEITEM table to the PART table
partitions, the optimizer does not want to move the rows of the LINEITEM table.
Instead, after filtering some of the PART table rows, the optimizer chooses to
broadcast (BTQ(16)) the PART table to be joined to the LINEITEM table. This join is
done before the join to the ORDERS table, because it helps reduce the size of the
LINEITEM table. Note that the partitioning of the result of this join is the same as
that of the LINEITEM table. Note also that the cardinality has been increased from
818664 to 1.30986a+08 after broadcasting the rows to the 160 partitions of the
LINEITEM table.

The join between PARTSUPP and LINEITEM is through the columns PARTKEY and
SUPPKEY. These columns are also the partitioning keys by which the PARTSUPP
table is partitioned. The optimizer chooses a directed table queue (DTQ(11)) to
push each of the result rows containing the LINEITEM data to the corresponding
partitions of the PARTSUPP table.

The NATION table is joined to the SUPPLIER table on the NATIONKEY. Because the
SUPPLIER is partitioned on the SUPPKEY, this join (HSJOIN(18)) uses a broadcast
table queue (BTQ(20). The resulting partitioning of this join is still the same as
the SUPPLIER was partitioned with SUPPKEY as the partitioning column.

The final join (HSJOIN(7)) is chosen with a directed table queue (DTQ(8)) to
send each row of the result of the join between LINEITEM, PART, ORDERS, and
PARTSUPP to the corresponding partitions of the result of SUPPLIER and NATION.
This is because the join predicate is on the SUPPKEY.

Finally at the top of the plan, after all the joins, we have a partial sort on the
N_NATION and O_YEAR columns on each partition. This also helps the intermediate
aggregation (GRPBY(4)) that collapses the size of the result on each partition.
The final aggregation is done through the GRPBY(2) operator. The order
required by the query is maintained by merging the rows from each partition
through the merging directed table queue (MDTQ(3)) sent to the coordinator
partition before the result is returned to the user.
 Chapter 3. Database partitioning 105

3.5.3 Rebalancer

To maintain data striping across containers, DB2 might determine that a
rebalance is necessary and kick off the rebalancer process. The rebalancer runs
asynchronously in the background, and data in the table space is still accessible
to applications during this process.

You can add space to a DMS table space by using the ADD, ADD TO STRIPE
SET, EXTEND, and RESIZE options of the ALTER TABLESPACE statement.
BEGIN NEW STRIPE SET is another option for adding space, but because it
does not result in a rebalance, we do not include it in this discussion.

You can remove space from a DMS table space by using the DROP, REDUCE,
and RESIZE options of the ALTER TABLESPACE statement.

Table space map
Each DMS table space has a “map” that describes how containers are positioned
within the logical address space of the table space. This table space map is used
to convert table space-relative page numbers to physical disk locations. During
the rebalance, extents are physically moved from one location on disk to another
location and the internal table space map is updated to point to the new spot.

All of the examples in this section use either a pictorial representation, a list of
ranges (table space map), or a combination of both to describe container
configurations.

In the pictorial representation:

� Each container is shown as a vertical bar of extents and the order of the
extents is determined by the container IDs (0 to N, with 0 on the left).

� Extent numbers might be listed in several of the examples, but they are not
necessary after you learn the basics.

� A stripe is a horizontal cross section of the containers, and a stripe is one
extent thick. There is always at least one stripe set in a table space and it is
stripe set #0.

� Consecutive stripes that have the identical container configurations (that is,
the same number of containers and the exact same container IDs within it)
make up a range. There is always at least one range in a table space,
because you must have at least one container.

The following fields exist for each range:

� Stripe set is the number of the stripe set in which the range exists.
� Stripe set offset is the stripe in which the range’s stripe set starts.
� Maximum extent is the highest extent mapped by the range.
106 Database Partitioning, Table Partitioning, and MDC for DB2 9

� Maximum page is the highest page mapped by the range.
� Start stripe is the stripe in which the range starts.
� Stop stripe is the stripe in which the range ends.
� Adjustment is a value used during a rebalance (more about this value later).
� Containers is the list of containers that participate in the range.

In Example 3-81, we create a table space that we use to explain rebalancing
concepts.

Example 3-81 Creating a table space with three containers

CREATE TABLESPACE ts1 MANAGED BY DATABASE USING
 (FILE 'cont0' 51, FILE 'cont1' 51, FILE 'cont2' 31) EXTENTSIZE 10

After removing the page or pages from each container for the tag and splitting
the remaining pages into extents, the three containers have five, five, and three
extents, respectively (13 total). The resulting container configuration can be
represented by either a pictorial representation or a map as shown in
Figure 3-11.

Figure 3-11 Pictorial representation of containers and a table space map

In Figure 3-11, there are three containers with sizes of 51, 51, and 31 pages
respectively. Each container has a container tag, and by default, this uses a
single page, leaving 50, 50, and 30 pages. The extent size is 10, and therefore,
there are 5, 5, and 3 extents.

Container IDs are assigned in the order in which they are listed in the
CREATE TABLESPACE statement.

In Figure 3-11, the three containers are shown as vertical bars of 5, 5, and 3
boxes (representing the number of extents in them).

When a table space is created, it is placed into this map so that striping starts by
using all of the containers (that is, all start in stripe 0).

Range Stripe
Set

S.S.
Offset

Max.
Extent

Max.
Page

Start
Stripe

End
Stripe Adj. Containers

0 0 0 8 89 0 2 0 3 (0,1,2)

1 0 0 12 129 3 4 0 2 (0,1)

Stripes

0 1 2

3 4 5

6 7 8

9 10

11 12

1

2

3

4

Range

Range

MapPictorial Representation
 Chapter 3. Database partitioning 107

You can see by the extent numbers in the boxes how DB2 stripes across these
containers. It starts in the first stripe and uses an extent in each of the containers
within the stripe. After it has striped across one stripe, it moves onto the next
one.

In this example, striping continues across all of the containers until container 2 is
full. When this happens, the striping is done across the remaining containers.

Because stripes 0 - 2 share the same containers, it is considered a range.
Stripes 3 - 4 share the same containers so they are also a range.

There are 9 extents in the first range, (0 - 8), which means that there are 90
pages in the first range, (0 - 89). These maximum values are stored in the map
along with the starting stripe (0), end stripe (2), and the containers (3 of them: 0,
1, and 2).

In the second range, there are 4 extents, 9 - 12 (pages 90 - 129). The starting
stripe is 3, the end stripe is 4, and there are 2 containers (0 and 1).

The adjustment value is an indication of how far into the range that the extents
start. It is non-0 only during a rebalance.

Table space map: Adding containers
When a table space is created, the starting points for all of the containers are in
stripe 0 (regardless of their sizes). This is not true when new containers are
added to an existing table space.

When a table space is created, its map is created and all of the given containers
are lined up so that they all start in stripe 0. This means that data is striped
evenly across all of the table space containers until the individual containers start
filling up.

When containers are added to an existing table space, they might be added so
that they do not start in stripe 0. Where they start in the map is determined by
DB2 and is based on the size of the containers added.

If the container is large enough so that it can start in stripe 0 and end at or
beyond the last stripe in the map, that is how it is positioned.

If it is not large enough to do this, it is placed so that it ends in the last stripe of
the map. This means that it does not start in stripe 0. This is done to minimize or
avoid rebalancing. We discuss more information about determining when a
rebalance is needed in the “Rebalancing” on page 114.

Using the table space created in Example 3-81 on page 107, Figure 3-12 on
page 109 shows three examples of adding one new container to it.
108 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 3-12 Adding containers to a table space

In the first example in Figure 3-12, a container with 3 extents is added (note that
the container is actually 4 extents in size, but one extent is used to hold the
container tag). If the container was placed so that it started in stripe 0, it ends in
stripe 2. Stripe 2 is not the last stripe in the map, so DB2 decides not to place it
this way. Instead, it is placed so that it starts in stripe 2 and ends in the last stripe
(stripe 4).

In the other two examples in Figure 3-12, containers are added with 5 and 6
extents. In these cases, they can be added so that they start in stripe 0 and stop
in the last stripe (4, as in the second example) or beyond it (5, as in the third
example).

Table space map: Extending containers
When extending containers, the new extents are added to the end of the
container in the map as shown in Figure 3-13 on page 110.

Adding container with 3 extents Adding container with 5 extents Adding container with 6 extents

alter tablespace ts1 add
(file 'cont3' 40)

alter tablespace ts1 add
(file 'cont3' 60)

alter tablespace ts1 add
(file 'cont3' 70)
 Chapter 3. Database partitioning 109

Figure 3-13 Extending containers

You can extend existing table space containers by using the EXTEND or
RESIZE options on the ALTER TABLESPACE statement.

When new space is added to an existing container, the map is changed so that
the space is just tacked on to the end of the container. In other words, the start
stripe for that particular container does not change but the end stripe for it does.
The end stripe increases by the number of extents added to it. Note that this can
still cause a rebalance to occur.

We provide all of the scenarios and examples in this section only to show you
how DB2 extends containers. The examples do not mean that these are good
configurations (in fact, they are not good configurations and are quite
impractical).

For examples #1 and #2 in Figure 3-13, the table space is created with three file
containers and the extent size is 100. The containers are 600, 600, and 400
pages in size but after removing an extent of pages from each for the tag, this
leaves 500, 500, and 300 pages (5, 5, and 3 extents).

Example #1 in Figure 3-13 increases the size of the first container by two extents
(200 pages). You can do this by using EXTEND and specifying the size
difference, or you can do this by using RESIZE and specifying the new size (800
in this case, 700 pages plus 100 for the tag).

To get container layout like left side of examples #1 and #2:
create tablespace dms1 managed by database using

(file 'C0' 600, file 'C1' 600, file 'C2' 400) extentsize 100

Any of these will result in right side of example:
alter tablespace dms1 extend (file 'C0' 200)

alter tablespace dms1 resize (file 'C0' 800)

Any of these will result in right side of example:
alter tablespace dms1 extend

(file 'C0' 200, file 'C1' 200, file 'C2' 400)

alter tablespace dms1 resize
(file 'C0' 800, file 'C1' 800, file 'C2' 800)

alter tablespace dms1 resize (all containers 800)

Extend
Example #1

Extend
Example #2
110 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example #2 in Figure 3-13 on page 110 increases the size of each of the
containers to seven extents. Using EXTEND, each container can be listed along
with the number of pages that it needs to grow. Using RESIZE, each container
can be listed along with the new size (800, which is 700 pages plus 100 for the
tag). Because all of the containers in the table space are resized to the same
size (800 pages), you can use the ALL CONTAINERS clause instead of listing
them individually.

Table space map: Reducing containers
When reducing containers, the extents at the end of the container are removed
as shown in Figure 3-14.

Figure 3-14 Reducing containers

When space is removed from an existing container, the map is changed so that
the space is removed from the end of the container. In other words, the start
stripe for that particular container does not change, but the end stripe for that
container does. The end stripe decreases by the number of extents removed
from it. Note that this can still cause a rebalance to occur.

We use all of the scenarios and examples in this section only for the purpose of
showing how DB2 reduces containers. These examples are not meant to imply
that these are good configurations, in fact, they are not good configurations and
are quite impractical.

To get container layout like left side of examples #1 and #2:
create tablespace dms1 managed by database using

(file 'C0' 600, file 'C1' 600, file 'C2' 400) extentsize 100

Any of these will result in right side of example:
alter tablespace dms1 reduce

(file 'C0' 200, file 'C1' 200)

alter tablespace dms1 resize
(file 'C0' 400, file 'C1' 400)

alter tablespace dms1 resize (all containers 400)

Any of these will result in right side of example:
alter tablespace dms1 reduce

(file 'C0' 200, file 'C2' 100)

alter tablespace dms1 resize
(file 'C0' 400, file 'C2' 300)

alter tablespace dms1 reduce (file 'C0' 200)
 resize (file 'C2' 300)

Reduce
Example #1

Reduce
Example #2
 Chapter 3. Database partitioning 111

For examples #1 and #2 in Figure 3-14 on page 111, the table space is created
with three file containers and the extent size is 100. The containers are 600, 600,
and 400 pages in size but after removing an extent of pages from each for the
container tag, this leaves 500, 500, and 300 pages (5, 5, and 3 extents).

Example #1 in Figure 3-14 on page 111 decreases the size of the first two
containers by two extents (200 pages). You can do this by using REDUCE and
specifying the size difference or by using RESIZE and specifying the new size
(400 in this case, 300 pages plus one for the tag).

Example #2 in Figure 3-14 on page 111 decreases the size of the first container
by two extents (200 pages) and decreases the size of the second container by
one extent (100). As shown, you can do this by using the REDUCE option,
RESIZE option, or a combination of both.

Table space map: Dropping containers
When dropping containers, the containers are dropped from the map as shown in
Figure 3-15.

Figure 3-15 Dropping containers

When dropping one or more containers, a rebalance likely happens (this
depends on the current container configuration and the amount of data in the
table space, we discuss this more in upcoming sections). The rebalance that
occurs when space is removed from a table space is called a reverse rebalance.

To get container layout like left side of examples #1 and #2:
create tablespace dms1 managed by database using

(file 'C0' 600, file 'C1' 600, file 'C2' 400) extentsize 100

This will result in right side of example:
alter tablespace dms1 drop (file 'C1')

This will result in right side of example:
alter tablespace dms1 drop (file 'C0'

 file 'C2')

Drop
Example #1

Drop
Example #1
112 Database Partitioning, Table Partitioning, and MDC for DB2 9

After containers have been dropped and the reverse rebalance completes, the
remaining containers are renumbered so that their container IDs are contiguous,
starting at 0.

For example, if there are five containers in a table space, they have container IDs
in the range of 0 - 4. If containers 0, 1, and 3 were dropped, this leaves
containers 2 and 4. After the reverse rebalance completes, the actual files and
devices associated with containers 0, 1, and 3 are released, and then containers
2 and 4 are renumbered to 0 and 1.

Table space map: Stripe sets
When a new stripe set is created in a table space, the new containers that are
added are appended to the existing map. Each of the new containers is
positioned so that it starts in the same stripe, regardless of its size as shown in
Figure 3-16.

Figure 3-16 Stripe sets

When creating a new stripe set using the BEGIN NEW STRIPE SET option of the
ALTER TABLESPACE statement, the new containers are added to the map so
that they do not share the same stripe with any other containers. In this way, data
rebalancing is not necessary and the rebalancer does not start.

In this example, a table space is created with three containers that are 5, 5, and
3 extents respectively (remember that an extent of pages (5 in this example) in
each container is used to hold the container tag).

create tablespace ts1 managed by database using
(file 'C0' 30, file 'C1' 30, file 'C2' 20) extentsize 5

alter tablespace ts1 begin new stripe set
(file 'C3' 20, file 'C4' 15)

alter tablespace ts1 begin new stripe set
(file 'C5' 15, file 'C6' 15, file, 'C7' 15)

Range Stripe
Set

S.S.
Offset

Max.
Extent

Max.
Page

Start
Stripe

End
Strip

e
Adj. Containers

0 0 0 8 44 0 2 0 3 (0,1,2)

1 0 0 12 64 3 4 0 2 (0,1)

2 1 5 16 84 5 6 0 2 (3,4)

3 1 5 17 89 7 7 0 1 (3)

4 2 8 23 119 8 9 0 3 (5,6,7)
 Chapter 3. Database partitioning 113

When the first new stripe set is created (stripe set 1), the containers that are
added (C3 and C4) are positioned in the map so that their stripe start value (5) is
one greater than the stripe end value of the last range in the map (4). After doing
this, the last stripe in the map is stripe 7.

When the second new stripe set is created (stripe set 2), the containers that are
added (C5, C6, and C7) are positioned in the map so that their stripe start value
(8) is one greater than the last stripe in the map (7).

As objects in the table space grow, space is consumed so that stripe 0 is used
first, followed by stripe 1, stripe 2, and so forth. This means that a stripe set is
only used after all of the space in the previous stripe sets has been consumed.

Rebalancing
When you add or remove space from a table space, a rebalance might occur
(depending on the current map and the amount of data in the table space). When
space is added and a rebalance is necessary, a forward rebalance is started
(extents move starting from the beginning of the table space).

When space is removed, a rebalance is necessary, and a reverse rebalance is
started (extents move starting with extents at the end of the table space).

When new space is added to a table space, or existing space is removed, a new
map is created. At this point, all of the extents still reside in physical locations on
the disk determined by the existing current map. It is the job of the rebalancer to
physically move extents from the original location (based on the current map) to
the new location (based on the new map) as shown in Figure 3-17.

Figure 3-17 Table space map after a rebalance

Forward rebalance
A forward rebalance starts with the first extent in the table space (extent 0),
moving one extent at a time until the extent holding the high-water mark has
been moved.

0 1 2

3 4 5

6 7 8

9 10

11 12

0 1 2

3 4 5

6 7 8

9 10

11 12

0 1 2 3

3 5 6 7

8 9 10 11

12 13 14

15 16 17

REBALANCE
114 Database Partitioning, Table Partitioning, and MDC for DB2 9

As each extent gets moved, the current map is updated so that it knows to look
for the extent in the new spot rather than the old one. As a result, the current map
begins to look like the new map.

Because the high-water mark is the stopping point for the rebalancer, by the time
that all of the extents have been moved, the current map and the new map are
identical up to the stripe holding the high-water mark.

Because there are no actual data extents above the high-water mark, nothing
else needs to move and the current map is made to look completely like the new
map.

Data is still accessible while a rebalance is in progress. Other than the
performance impact of the rebalance, objects can be dropped, created,
populated, and queried as if nothing were happening.

Even empty extents are moved during a rebalance, because the rebalancer does
not know whether extents are empty or in use. This is done for a couple of
reasons. First, to know about free and in use extents, Space Map Pages (SMPs)
must be “locked” in the buffer pool, and changes to SMPs cannot occur while the
SMPs are scanned. This means that objects cannot be created or dropped while
the corresponding SMPs are locked. Second, new space is usually added to a
table space when there is little or no free space in it. Therefore, there need to be
few free extents and the overhead of moving them unnecessarily is quite small
relative to the work done for the rest of the rebalance.

For example, a table space has two containers that are each four extents in size.
A third container of the same size is then added. The high-water mark is within
the 6th extent (extent #5) as shown in Figure 3-18 on page 116.
 Chapter 3. Database partitioning 115

Figure 3-18 Forward rebalance

The current map is the table space map that describes the container
configuration before adding the new container.

The new map is what the current map looks like after the rebalance is complete.

Note the following in this example in Figure 3-18:

� The container tag is not mentioned or taken into consideration. The sizes of
the containers are given in “usable extents” (in other words, the number of
extents that DB2 can use to actually hold data).

� The extent size has not been given (because it does not add anything to the
example). Therefore, the Max. Page field is not shown.

Reverse rebalance
If the space that is removed (whether it is full containers dropped or extents
removed as part of a reduction) all is after the high-water mark extent in the table
space map, a reverse rebalance is unnecessary. Because none of the extents
removed contain any data, nothing needs to be moved out of the extents into the
remaining extents.

A reverse rebalance starts with the high-water mark extent, moving one extent at
a time until the first extent in the table space (extent 0) has been moved.

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

Range Stripe
Set

S.S.
Offset

Max.
Extent

Start
Stripe

End
Stripe Adj. Containers

0 0 0 7 3 0 0 2 (0,1)

0 1 2

3 4 5

6 7 8

9 10 11

Range Stripe
Set

S.S.
Offset

Max.
Extent

Max.
Page

Start
Stripe

End
Stripe Adj. Containers

0 0 0 11 0 3 0 0 2 (0,1)

Current Map:

Current positions of
extents with respect
to current and new
containers

New Map:
116 Database Partitioning, Table Partitioning, and MDC for DB2 9

As each extent gets moved, the current map is updated so that it knows to look
for the extent in the new location rather than the old location. As a result, the
current map begins to look more and more similar to the new map.

Data is still accessible while a rebalance is in progress. Other than the
performance impact of the rebalance, objects can be dropped, created,
populated, and queried as if nothing were happening.

Even empty extents are moved during a rebalance, because the rebalancer does
not know whether extents are empty or in use. This is done for the following
reasons. First, to know about free and in use extents, SMP pages must be
“locked” in the buffer pool and changes to them cannot occur while the SMPs are
scanned. This means that objects cannot be created or dropped while the
corresponding SMPs are locked. Second, new space is usually added to a table
space when there is little or no free space in it. Therefore, there must be few free
extents and the overhead of moving the free extents unnecessarily is quite small
relative to the work done for the rest of the rebalance.

Space availability
If the map is altered in such a way that all of the space comes after the
high-water mark, a rebalance is unnecessary and all of the space is available
immediately for use as shown in Figure 3-19.

Figure 3-19 Space after the table space high-water mark

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

Range Stripe
Set

S.S.
Offset

Max.
Extent

Start
Stripe

End
Stripe Adj. Containers

0 0 0 7 3 0 0 2 (0,1)

0 1 2

3 4 5

6 7 8

9 10 11

Range Stripe
Set

S.S.
Offset

Max.
Extent

Max.
Page

Start
Stripe

End
Stripe Adj. Containers

0 0 0 11 0 3 0 0 2 (0,1)

Current Map:

Current positions of
extents with respect
to current and new
containers

New Map:
 Chapter 3. Database partitioning 117

If the map is altered so that part of the space comes after the high-water mark as
shown in Figure 3-20, the space in the stripes above the high-water mark
becomes available for use. The rest of the space is unavailable until the
rebalance is finished.

Figure 3-20 Space after the high-water mark is available for use

By the same logic, if all of the space is added to the map so that the space is in
the high-water stripe or lower, none of the space becomes available until after
the rebalance is complete, as shown in Figure 3-21.

Figure 3-21 Space is not available until rebalanced

Tips for creating table spaces and adding space
We recommend that you:

� Create table spaces with equally sized containers.

� Create a table space large enough for your current needs, as well as your
potential future growth (you might need to balance the cost of currently
unused space with the ease of administration).

� If possible, extend containers instead of adding them (less chance of
rebalancing).

� When adding new containers, consider growth and try to plan for the future by
possibly adding more containers than immediately needed (to save on
rebalances).

� If you are satisfied with the striping that occurs across the existing containers,
create a new stripe set, which guarantees that a rebalance does not occur.

"X" denotes an
extent below the
high-water mark
and "H" is the
high-water mark.

X X

X X

X H

X X

X X

X H

X X X

X X

X H

X X X

X X

X H

X X

X X

X H

X X

X H

X X

X X

X H

X X

X H

X X X

X X X

X X

X X

X H

X X X

X X X

X X

X X

X H
118 Database Partitioning, Table Partitioning, and MDC for DB2 9

3.6 Using Materialized Query Tables to speed up
performance in a DPF environment

Materialized Query Tables (MQTs) offer a way to speed up response times on
well-known and repeatable queries against large volumes of data, where results
are often expressed as summaries or aggregates. This section describes the
MQT.

3.6.1 An overview of MQTs

An MQT is a real (materialized) table built from the result set of a query. Like any
other table, an MQT can have indexes. Use RUNSTATS to collect and store
table statistics. MQTs primarily exist for performance. Properly selected, MQTs
perform a set of calculations that can then be used over and over by subsequent
queries, but without going through the same operations again and again. The
qualifying rows do not need to be fetched again, saving input time. Also, the
calculations do not need to be redone, which saves CPU time.

3.6.2 When to consider a MQT

The design of good materialized query tables requires adequate up-front
planning and analysis. You need to be familiar with the query workload to identify
patterns for accessing tables and frequently performed aggregation and
summarization. When deciding whether to create a materialized query table,
consider:

� Does the MQT significantly increase performance?

� Do many queries benefit? Do the most frequent, most critical, or most
expensive and longest running queries benefit?

� Does the MQT offer resource savings: communication, I/O, and CPU?

� Is the loss of disk space that contains the MQT and its indexes a worthwhile
trade for the performance gained?

� What is the cost of updating or refreshing the MQT?

� What are the patterns for accessing groups of tables, for aggregation, and for
grouping requirements?

� How current does the data in the MQT need to be? Does it need to be up to
the minute?

� For MQTs that are maintained in real time, are automatic updates too slow?

� In a partitioned environment, does collocation of data provide any benefit?
 Chapter 3. Database partitioning 119

� What is the logging requirement when large MQTs are refreshed?

� Does the MQT need to be system-maintained or user-maintained?

3.6.3 When to use the MQT

This section discusses the two portions of the SQL compiler that determine
whether to use an MQT. First, the query rewrite portion must be able to
determine that an MQT exists and that it can be used to satisfy the current query.
Second, the optimizer examines the costs of using the MQT and makes the final
determination to use or not use the MQT.

For the optimizer to consider using an MQT in the access plan, certain conditions
must be met:

� For REFRESH DEFERRED MQTs, the CURRENT REFRESH AGE special
register must be set to ANY. This setting informs the optimizer that any
version of the MQT can be used to determine the answer to the query.
REFRESH IMMEDIATE MQTs are always current and are candidates for
optimization regardless of the setting of the CURENT REFRESH AGE
register.

� The MQT must not be in REFRESH PENDING mode or CHECK PENDING
NO ACCESS state.

� The optimization level must be equal to 2, or greater than or equal to 5. The
default value for the query optimization level is 5. It can be changed by
updating the database configuration parameter DFT_QUERYOPT. You can
also set the value as shown in Example 3-82.

Example 3-82 Set the current query optimization level

-- Valid values are 0, 1, 2, 3, 5, 7, and 9
SET CURRENT QUERY OPTIMATION 7

� The special register CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION must be set for the appropriate type of MQT to be
considered. Acceptable settings are ALL, NONE, SYSTEM,
FEDERATED_TOOL, or USER. If set to SYSTEM, user-maintained MQTs
are not used for optimizing. Example 3-83 shows how to set this register to
the value SYSTEM.

Example 3-83 Set the current maintained table types register

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION = SYSTEM

� The isolation level currently in effect must be equal to or lower than the
optimization level that was in effect when the MQT was created.
120 Database Partitioning, Table Partitioning, and MDC for DB2 9

3.6.4 Intra-database replicated tables and partitioning

In the partitioned database environment, the performance of joins increases
dramatically when the rows of the separate tables in the join are collocated, and
we can avoid shipping data between partitions.

Figure 3-22 describes an environment with a collocated join between CUST and
ORDERS tables, which have been partitioned on CUST_ID column.

However, when the REGION table is also involved in the join, then a collocated join
is not possible, because the REGION table does not have a CUST_ID column, and
therefore, cannot be partitioned by CUST_ID. DB2 can choose to perform a
directed join in this particular case, but the performance of directed joins is less
efficient than a collocated join, because the movement of rows is inline with
query execution.

Figure 3-22 Replicated MQT

You can use MQTs to replicate tables to other database partitions to enable
collocated joins to occur even though all the tables are not joined on the
partitioned key. In Figure 3-22, REGION is replicated to the other partitions using
the MQT infrastructure in order to enable collocated joins for superior
performance.
 Chapter 3. Database partitioning 121

Example 3-84 shows how to create a replicated table. Table REGION is stored in a
single-partition table space. In order to facilitate a collocated join with a table in
the multipartition table space TBSP123, we create the replicated MQT
REGION_MQTR. With the REPLICATED clause, we requested that it is duplicated
on all the partitions in the partition group over which table space TBSP123 is
defined.

Example 3-84 Creating a replicated MQT

CREATE TABLE db2inst1.region_mqtr AS
(SELECT * from db2inst1.region)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
REPLICATED IN tbsp123

DB20000I The SQL command completed successfully.

REFRESH TABLE db2inst1.region_mqtr
DB20000I The SQL command completed successfully.

REFRESH TABLE db1inst1.region_mqtr INCREMENTAL
DB20000I The SQL command completed successfully.

3.7 Best practices

In this section, we look at several of our best practices recommendations for
setting up your DPF environment.

3.7.1 Selecting the number of partitions

Selecting the optimum number of partitions for your partitioned database can be
difficult. However, we recommend having as few partitions per server as
possible. Whenever possible, have at least one partition per CPU, although
having two to four CPUs per partition typically works best. We also recommend
using 64-bit instances, which allow greater addressability, enabling you to have
larger buffer pools.

Coordinator partition
In a DPF environment, any partition can be a coordinator partition. In fact more
than one partition can service requests from your users or applications.
However, we recommend that you dedicate one partition in your environment to
be the coordinator partition and that this partition is only used as the coordinator
partition and does not hold any data. When setting up your application
connection, we recommend that you use the SET CLIENT command and specify
122 Database Partitioning, Table Partitioning, and MDC for DB2 9

the coordinator node in the command. Example 3-85 shows the usage of the
command to connect to a specific partition.

Example 3-85 SET CLIENT command

$ db2 set client connect_dbpartitionnum 3
DB20000I The SET CLIENT command completed successfully.

$ db2 connect to testdb

 Database Connection Information

 Database server = DB2/AIX64 9.1.2
 SQL authorization ID = DB2INST1
 Local database alias = TESTDB

$ db2 "values(current dbpartitionnum)"

1

 3
1 record(s) selected.

Catalog partition
The catalog partition is the database partition that stores the system catalogs for
the partitioned database. We recommend separating the catalog partition from
the data partitions.

3.7.2 Distribution key selection

Correct distribution key selection is essential to help you ensure that data is
distributed evenly across partitions. This in turn can help with workload
distribution. You need to take into account the join strategies used, the type of
tables that are accessed, and the types of queries issued against the tables.

When choosing the distribution key, try to include columns that are frequently
used for joins to increase the number of collocated joins. Include columns that
are often used in a GROUP BY clause. Choose a column with a high number of
distinct values. If the column has a limited number of distinct values, extremely
few hashing numbers are generated. This increases the possibility of data skew
and, therefore, a workload imbalance. Having a partitioning key that consists of
four or more columns can cause performance issues because of the number of
hashing values that are generated. Always choose your own distribution key
rather than letting DB2 use the default distribution key if one is not specified.
 Chapter 3. Database partitioning 123

Consider that integer columns are more efficient than character columns, which
in turn are more efficient than using decimal columns. The partitioning key must
be a subset of the primary key or unique index.

Remember that after you select a distribution key for a table, you cannot alter the
key unless the table is in a table space that is associated with a single-partition
database partition group.

3.7.3 Collocation

Tables that are collocated are stored in the same database partition group that
allows the processing of a query within the same logical partition. This avoids
unnecessary movement of data over the partitions in your DPF environment. To
help ensure table collocation, use the join columns as partitioning keys. The
joined tables can then be placed in table spaces that share the same partition
group. The joined tables’ partitioning keys must have the same number of
columns and corresponding data types. Try to place small tables in
single-partition database partition groups, except when you want to take
advantage of collocation with a larger table. Also, try to avoid extending
medium-sized tables across too many database partitions. Performance might
suffer if a mid-sized table is spread across too many partitions.

Note: Creation of a multiple-partition table that contains only long data types
(LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB) is not
supported.
124 Database Partitioning, Table Partitioning, and MDC for DB2 9

Chapter 4. Table partitioning

This chapter provides information about the implementation of table partitioning.
This applies to UNIX, Linux, and Windows operating systems.

4

© Copyright IBM Corp. 2007. All rights reserved. 125

4.1 Planning considerations

This section discusses strategies and the partitioning selection.

4.1.1 Roll-in and roll-out strategies

We advise that you consider the roll-in and roll-out strategies in the database and
table design. The roll-in and roll-out strategies determine the table partition
granularity and layout. Roll-in refers to adding a new partition or attaching a new
partition to a partitioned table. Roll-out refers to detaching a partition from a
partitioned table.

You can use roll-in to:

� Add space for new data.

� Add data that is in an existing table (provided the table characteristics match
the partitioned table).

� Re-add a partition that has been previously detached.

You can use roll-out to:

� Remove data from the partitioned table to an archive.

� Remove data from a partitioned table and delete.

� Temporarily remove the partition to a stand-alone table for maintenance, such
as a REORG.

Only one partition can be added, attached, or detached in a single ALTER
TABLE statement. If you plan to roll-in and roll-out multiple partitions, you must
execute multiple ALTER ATTACH and ALTER DETACH statements. It is a good
practice to put all the ATTACH or DETACH statements in the same transaction
to avoid exclusively locking the entire table multiple times. The SET INTEGRITY
executed after the ATTACH transaction can take care of all the new data in a
single pass.

Roll-in strategies
Roll-in strategies include the use of the ADD PARTITION and ATTACH
PARTITION options of the ALTER TABLE statement.

ADD PARTITION
The strategy for using ADD PARTITION is to create a new partition in the
partitioned table and INSERT or LOAD data directly to the partitioned table,
provided that it complies with the overall range of the altered table. Using ADD
126 Database Partitioning, Table Partitioning, and MDC for DB2 9

PARTITION with LOAD minimizes logging, but table access is limited to, at the
most, ready only.

We provide examples of the use of ADD PARTITION later in this chapter.

ATTACH PARTITION
Alternatively, you can use the ATTACH PARTITION parameter of ALTER
TABLE. This allows you to attach an existing table that you have already loaded
with data. This method provides minimal disruption when accessing a table.

When you perform an ATTACH, you must follow with SET INTEGRITY. This
incorporates the data into the indexes on the table. At the same time, it also
validates that the data is all within the boundaries defined for that range. SET
INTEGRITY has been made online in DB2 9 so that this longer running portion of
roll-in can take place while applications continue to read and write the existing
data in the table.

Be aware that the online SET INTEGRITY is a single statement and runs as a
single transaction. If the attached data volume is large, the index maintenance
can potentially need a large amount of log space for recovery. An alternative
roll-in solution is by using ALTER ADD to add a partition and use LOAD to move
the data into the partition.

We provide examples of the use of ATTACH PARTITION later in this chapter.

Roll-out strategies
The roll-out strategy is to use the DETACH PARTITION option of the ALTER
TABLE statement.

DETACH PARTITION
Use the DETACH PARTITION option to DETACH a partition to a stand-alone
table. You can then perform actions as required, such as REORG, EXPORT
data, DROP or prune data, and re-ATTACH.

We provide examples of the use of DETACH PARTITION later in this chapter.

Note that the new table resulting from the detached partition resides in the same
table space as the original partition. If exclusive use of that table space is
required for the partitioned table space, you have to DROP and re-CREATE the
table elsewhere.
 Chapter 4. Table partitioning 127

4.1.2 Range selection

The value of the partitioning key columns determines how the data is divided into
ranges or data partitions. Determining the range is one of the essential elements
of table partitioning. Range selection defines the key column, how many
partitions to have in the table, the volume of data to be rolled-out, and limits to
the data that the table holds.

Your particular selection for ranges depends on what you want to achieve by
partitioning. If the partitioning is to achieve a date or time roll-in and roll-out, the
range column is a date column, a time column, or a combination of both. If you
are more interested in a performance solution by separating data in a table to
physical objects (disk drives), you can choose a column, such as region, state, or
county and define the resulting partitions to the physical database objects by
separating the partitions to individual table spaces.

You need to define the range’s granularity to match the data roll-out strategy. In
reality, most data trickles in, which makes it hard to match the range with roll-in
size. You have flexibility in how you utilize table partitioning. The basic principle
is partitioning on a column that provides advantages in partition elimination and
also makes the data management task (roll-out and roll-in) easier.

Range selection can be done by using automatically generated ranges where an
overall range is divided equally, a manually generated range where the individual
range for each partition is specified, or a combination of both.

4.1.3 Handling large objects

Large objects can be contained within the data table spaces specified in the
minimum specification of the CREATE TABLE statement or you can use the
option to separate them to their own table spaces. There are various ways of
dealing with large objects in separate table spaces, which we discuss with
examples in this chapter.

4.1.4 Indexing partitioned tables

As with indexes on non-partitioned tables, each index contains pointers to rows
in all the data partitions of the table. However, an important difference is that
each index on a partitioned table is an independent object.
128 Database Partitioning, Table Partitioning, and MDC for DB2 9

Because an index on a partitioned table can act independently of other indexes,
special considerations are needed with respect to which table space to use when
creating an index on a partitioned table:

� Even though the table’s data partitions might span multiple table spaces, an
index on a partitioned table is created in a single table space. The index table
space for each index can be specified in the CREATE INDEX statement.

� The use of indexes in a different location than the table is supported on both
System-Managed Space (SMS) and Database-Managed Space (DMS) table
spaces.

� All table spaces specified for the partitioned table must be in the same
database partition group.

� Each index can be placed in its own table space, including large table spaces.

� The index table space type, either DMS or SMS, must be the same as that
used for the data partitions.

Benefits of an index on a partitioned table are:

� Performance of online index creation and dropping of indexes is improved.

� You have the ability to use different values for any of the table space
characteristics between each index on the table (for example, different page
sizes for each index might be appropriate to ensure better space utilization).

� More efficient concurrent access to the index data for the table.

� You can reorganize an individual index on a range partitioned table.

4.2 Implementing table partitioning

This section describes the implementation of table partitioning using both the
Control Center and Command Line Processor (CLP) commands, as well as the
relationships of the table spaces, partitions, file systems, and logical drives.

Basic syntax for the CREATE TABLE statement for data partitioned table is:

CREATE TABLE table-name (column-definition)
 PARTITION BY RANGE (partition key columns)
 (
 PARTITION partition-name starting-clause ending-clause
 IN tablespace-name
 ...
 PARTITION partition-name starting-clause ending-clause
 IN tablespace-name
)
 Chapter 4. Table partitioning 129

You can read the complete details of the syntax in the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0000927.htm

4.2.1 Creating a data partitioned table

A simple partitioned table was implemented by using the Control Center and
using the DB2 Command Line Processor (CLP). The table definition is shown in
Figure 4-1.

Figure 4-1 Table definition for the INVOICE table

Using the Control Center to implement a partitioned table
Using the Control Center, these are the steps that we used to create the
partitioned table.

To start the Control Center:

Start → All Programs → IBM DB2 → DB2COPY1(Default) → General
Administration Tools → Control Center

Columns
CUSTNO BIGINT
TRANSACTION_DATE DATE
AMOUNT DECIMAL(15,2)
CUST_NAME CHAR(10)
Range TRANSACTION_DATE
PARTITIONING (partition name, range, table space name(Large,16k)
 INV_PRE00 (< 01/01/2000) INV_PRE00
 INV_2000 (01/01/2000 - 31/12/2000) INV_2000
 INV_2001 (01/01/2001 - 31/12/2001) INV_2001
 INV_2002 (01/01/2002 - 31/12/2002) INV_2002
 INV_2003 (01/01/2003 - 31/12/2003) INV_2003
 INV_2004 (01/01/2004 - 31/12/2004) INV_2004
 INV_2005 (01/01/2005 - 31/12/2005) INV_2005
 INV_2006 (01/01/2006 - 31/12/2006) INV_2006
 INV_2007 (01/01/2007 - 31/12/2007) INV_2007
 INDEXES INV_IX
 LONG INV_LNG
 OTHER INV_ALL
130 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000927.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0000927.htm

Creating the table spaces
The steps to create the table spaces are:

1. We created the required table spaces by selecting Table Space → Create as
shown in Figure 4-2.

Figure 4-2 Create table spaces for INVOICE table

2. Then, we defined the table space parameters for INV_PRE00, which we depict
in Figure 4-3 on page 132, Figure 4-4 on page 132, and Figure 4-5 on
page 133.

Note: The data table spaces must have the same characteristics, such as
regular or large, page size, and extent size.
 Chapter 4. Table partitioning 131

Figure 4-3 Defining the INV_PRE00 table space: Naming the table space

Figure 4-4 Defining the INV_PRE00 table space: Specify the type of table space
132 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 4-5 Defining the INV_PRE00 table space: Review parameters

3. This was repeated for the remaining table spaces as shown in the table
definition in Figure 4-1 on page 130.

Creating the INVOICE table
The steps to create the INVOICE table are:

1. We started the creation of the INVOICE table. The initial Control Center
actions are shown in Figure 4-6 on page 134 where we right-click Table →
Create. Then, we defined the schema name and table name, which is shown
in Figure 4-7 on page 134.
 Chapter 4. Table partitioning 133

Figure 4-6 Creating the INVOICE table

Figure 4-7 Creating the INVOICE table: Naming the table

2. In the Add Column window, we defined the columns as shown in Figure 4-8
on page 135.
134 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 4-8 Creating the INVOICE table: Step two, defining the columns

3. In the Define data partitions window, we defined TRANSACTION_DATE as the
partition range as shown in Figure 4-9 on page 136.
 Chapter 4. Table partitioning 135

Figure 4-9 Creating the INVOICE table: Defining the range

4. Then, we defined the INV_PRE00 partition as shown in Figure 4-10 on
page 137. You must have already determined the starting and ending values
for each partition.
136 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 4-10 Creating the INVOICE table: Defining the INV_PRE00 partition

5. Next, we assigned the table spaces to the partition for data, long data, and
indexes, which is shown in Figure 4-11 on page 138. You still have the
opportunity at this point to create table spaces, but we suggest that you
predefine all the table spaces that you require.
 Chapter 4. Table partitioning 137

Figure 4-11 Creating the INVOICE table: Specify table space

6. Finally, in Figure 4-12 on page 139, you have the opportunity to review the
SQL actions that are performed when you complete the task.

This completes the setup of the partitioned table by using the Control Center.
138 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 4-12 Creating the INVOICE table: Step six, reviewing the actions

Using the DB2 Command Line Processor
This section deals with the creation of the same table by using the DB2
Command Line Processor (CLP).

Creating the table spaces for the partitioned table
We performed the same exercise to create the table spaces for the partitioned
table by using the SQL statements shown in Example 4-1.

Example 4-1 Create table spaces for INVOICE table

CREATE LARGE TABLESPACE inv_pre00 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_2000 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_2001 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;
 Chapter 4. Table partitioning 139

CREATE LARGE TABLESPACE inv_2002 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_2003 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_2004 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_2005 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_2006 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_2007 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_all PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_lng PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

CREATE LARGE TABLESPACE inv_indx PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16 TRANSFERRATE 0.14
BUFFERPOOL ibmdefaultbp ;

Create the table
We created the table by using the statements in Example 4-2 on page 141. Note
the use of the inclusive and exclusive parameters. As an alternative, you can
specify the ending date as 12/31/20xx inclusive.
140 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 4-2 Create INVOICE table

CREATE TABLE invoice (
 custno BIGINT NOT NULL ,
 transaction_date DATE NOT NULL ,
 amount DECIMAL (15, 2) NOT NULL ,
 custname CHARACTER (10) NOT NULL)
 PARTITION BY RANGE (transaction_date) (
 PARTITION inv_pre00 STARTING FROM (MINVALUE) EXCLUSIVE ENDING AT
 ('01/01/2000') EXCLUSIVE IN inv_pre00 ,
 PARTITION inv_2000 STARTING FROM ('01/01/2000') INCLUSIVE ENDING AT
 ('01/01/2001') EXCLUSIVE IN inv_2000 ,
 PARTITION inv_2001 STARTING FROM ('01/01/2001') INCLUSIVE ENDING AT
 ('01/01/2002') EXCLUSIVE IN inv_2001 ,
 PARTITION inv_2002 STARTING FROM ('01/01/2002') INCLUSIVE ENDING AT
 ('01/01/2003') EXCLUSIVE IN inv_2002 ,
 PARTITION inv_2003 STARTING FROM ('01/01/2003') INCLUSIVE ENDING AT
 ('01/01/2004') EXCLUSIVE IN inv_2003 ,
 PARTITION inv_2004 STARTING FROM ('01/01/2004') INCLUSIVE ENDING AT
 ('01/01/2005') EXCLUSIVE IN inv_2004 ,
 PARTITION inv_2005 STARTING FROM ('01/01/2005') INCLUSIVE ENDING AT
 ('01/01/2006') EXCLUSIVE IN inv_2005 ,
 PARTITION inv_2006 STARTING FROM ('01/01/2006') INCLUSIVE ENDING AT
 ('01/01/2007') EXCLUSIVE IN inv_2006 ,
 PARTITION inv_2007 STARTING FROM ('01/01/2007') INCLUSIVE ENDING AT
 ('01/01/2008') EXCLUSIVE IN inv_2007)
 IN inv_all INDEX IN inv_indx LONG IN inv_lng;

4.2.2 Adding a new partition

To add a new partition, you can use the ADD PARTITION and ATTACH
PARTITION options of the ALTER TABLE statement.

ADD PARTITION
Adding a data partition to a partitioned table by using ADD PARTITION adds an
empty partition to the table. After you add the new partition, you can then insert or
load data directly into the partitioned table.

Example 4-3 on page 142 shows the SQL statements to add a new partition for
the 2008 year. You can do this in preparation for the change to the new calendar
year.
 Chapter 4. Table partitioning 141

Example 4-3 Add partition to INVOICE table for year 2008

CREATE LARGE TABLESPACE inv_2008 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE
 EXTENTSIZE 16
 OVERHEAD 10.5
 PREFETCHSIZE 16
 TRANSFERRATE 0.14
 BUFFERPOOL ibmdefaultbp ;

ALTER TABLE invoice
 ADD PARTITION inv_2008
 STARTING FROM ('01/01/2008') INCLUSIVE ENDING AT
 ('01/01/2009') EXCLUSIVE IN inv_2008 ;

ATTACH PARTITION
Alternatively, you can add a new partition to a data partitioned table by using the
ATTACH PARTITION option. This is an efficient way to roll-in table data to a data
partitioned table.

The attaching partition process is:

� Create a non-partitioned compatible table.
� Load the data into the newly created table.
� Attached the new table to the partitioned table.

Note that the table to be attached must be compatible with the target partitioned
table. Create the new table by using the same DDL of the source table. If the
target table is an existing table, make sure the table definitions match. There is
no data movement during ATTACH. Because the new partition is essentially the
same physical data object as the stand-alone table, the new partition inherits the
table space usage from the original stand-alone table. So, create the stand-alone
table in the correct table space before attaching.

Example 4-4 on page 143 illustrates attaching table INVOICE_DATE_2008Q1 to
INVOICE_DATE.
142 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 4-4 Attaching a partition for first quarter of 2008

CREATE TABLE invoice_date_2008q1(
 custno BIGINT NOT NULL ,
 transaction_date DATE NOT NULL ,
 amount DECIMAL(15,2) NOT NULL ,
 custname CHAR(10) NOT NULL ,
 time TIME NOT NULL ,
 region INTEGER NOT NULL)
IN inv_tbsp2008_01;

ALTER TABLE invoice_date
 ATTACH PARTITION inv_2008qtr1
 STARTING FROM ('01/01/2008') INCLUSIVE
 ENDING AT ('04/01/2008')
 EXCLUSIVE FROM TABLE invoice_date_2008qtr1;

SET INTEGRITY FOR invoice_date IMMEDIATE CHECKED;

4.2.3 Detaching a partition

To roll-out or detach a partition, use the DETACH PARTITION option of the
ALTER TABLE statement.

DETACH PARTITION
If you decide to remove all of the pre-2000 data from this table to store it in a
separate table, you use the DETACH parameter of the ALTER TABLESPACE
statement. To demonstrate this, we have detached the INV_PRE00 partitions into
a table called INV_PRE00. The statements that we used are in Example 4-5.

Example 4-5 Detaching partition INV_PRE00 into table INV_PRE00

ALTER TABLE invoice DETACH PARTITION inv_pre00 INTO TABLE inv_pre00 ;

Note that the new table resulting from the detached partition resides in the same
table space as the original partition. If exclusive use of that table space is
required for the partitioned table space, you have to DROP and re-CREATE the
table elsewhere.

Asynchronous index cleanup
Asynchronous index cleanup (AIC) is a new feature that automatically cleans up
the index entries and reclaims index space for the partition that has been
detached. It is triggered by the DETACH or after refreshing dependent MQTs.
AIC runs as a low priority background process to remove all the index entries
 Chapter 4. Table partitioning 143

corresponding to data that has been rolled-out. Meanwhile, the entries are
present, but invisible to normal queries. The features that make AIC unobtrusive
are:

� Periodically checks for waiters and releases locks.
� AIC does not activate a database partition.
� AIC does not keep a database partition active if all applications disconnect.

The detaching process provides higher table availability than the bulk data
deletion. Figure 4-13 shows the table availability for DETACH for non-MQT
tables. When detaching a partition, there might be slight contention during index
cleaning if AIC performs the index cleaning.

Figure 4-13 Non-MQT table availability for DETACH

Figure 4-14 on page 145 shows the table availability for DETACH for refresh
immediate MQTs.

DETACH

ASYNC INDEX
CLEANUP

off line available

NEW METHOD: DETACH

OLD METHOD: DELETE

DELETE

contentionavailable available

available slight contention
144 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 4-14 Table Availability for DETACH (with refresh Immediate MQTs)

Considerations when you use DETACH to roll-out a range of data:

� Rolled-out data is available in a new, separate table.

� Data disappears from view immediately upon DETACH.

� Delete triggers do not fire for DETACH.

� Rolled-out data can be dropped, archived, or moved to another storage
management system.

� Queries are drained and table-locked by DETACH.

� Dependent refresh immediate MQTs go offline and need to be refreshed
using SET INTEGRITY.

4.2.4 Re-attaching a partition

There might be a later requirement to add the data for 1999 back into the INVOICE
table. To do this, we chose to use the ATTACH partition method, which required
the steps shown in the statements in Example 4-6 on page 146. If an error was
made and the data was outside of the partition definition, an SQL0327 message
appeared.

The data for 1999 was separated into a new table in preparation for the ATTACH.

NEW METHOD: DETACH

OLD METHOD: DELETE

contentionavailable available
MQTs

contentionavailable available

DELETE

Table

DETACH

ASYNC INDEX
CLEANUP

off lineavailable
Table

slight contentioncontention available

availableslight contention
MQTs

off line

REFRESH MQT
 Chapter 4. Table partitioning 145

Example 4-6 Attaching a partition to INVOICE with data for 1999

CREATE LARGE TABLESPACE inv_1999 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16
TRANSFERRATE 0.14 BUFFERPOOL ibmdefaultbp ;

CREATE TABLE inv_1999 LIKE inv_pre00 ;
INSERT INTO inv_1999 SELECT * FROM inv_pre00
WHERE transaction_date >= '01/01/1999'
AND transaction_date <= '12/31/1999' ;

ALTER TABLE invoice ATTACH PARTITION inv_1999
STARTING FROM ('01/01/1999') INCLUSIVE
ENDING AT ('01/01/2000') EXCLUSIVE
FROM TABLE inv_1999 ;

SET INTEGRITY FOR invoice IMMEDIATE CHECKED;

Alternatively, we can add a partition by using the ADD partition method as in
Example 4-7 and then insert the data by using a select from the INV_PRE00 table.
This achieves the same result.

Example 4-7 Adding a partition for 1999 and inserting data

CREATE LARGE TABLESPACE inv_1999 PAGESIZE 4 K MANAGED BY AUTOMATIC
STORAGE EXTENTSIZE 16 OVERHEAD 10.5 PREFETCHSIZE 16
TRANSFERRATE 0.14 BUFFERPOOL ibmdefaultbp ;

ALTER TABLE invoice ADD PARTITION inv_1999
STARTING FROM ('01/01/1999') INCLUSIVE
ENDING AT ('01/01/2000') EXCLUSIVE IN inv_1999 ;

INSERT INTO invoice SELECT * FROM inv_pre00
WHERE transaction_date >= '01/01/1999'
AND transaction_date <= '12/31/1999' ;

As a result, we now have pre-2000 data residing in a separate table (INV_PRE00),
1999 data included in the INVOICE table, and a space for new data for 2008.

4.2.5 RANGE option

Understand the RANGE option is essential for partitioned table design. You must
determine the RANGE granularity for the individual application before you
146 Database Partitioning, Table Partitioning, and MDC for DB2 9

implement the partitioned table. After you select the range, it cannot be changed
dynamically.

The RANGE option of the CREATE TABLE command defines the ranges of the
partitions and, in the case of the automatically generated range, defines the
number of partitions.

The RANGE specification is a combination of the RANGE partition expression
and the RANGE partition element:

PARTITION BY RANGE (partition-expression) (partition-element)

RANGE partition expression
The partition expression defines the column or columns for the partitioning key.
The maximum columns allowed is 16. The syntax of the partition expression is:

For example,

PARTITIONED BY RANGE (sales_region)

The NULLS LAST and NULLS FIRST specify that the null values compare high
or low. Not all the data types supported by the partitioned table can be the
partitioning key column data type. For the details of the supported data types,
refer to the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

RANGE partition element
The partition element specifies the ranges for the data partitioning key.
Figure 4-15 on page 148 shows the syntax of the partition element.
 Chapter 4. Table partitioning 147

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

Figure 4-15 Partition element syntax

Each data partition has to have a unique name. If the partition name is not
specified, the name defaults to PARTx where x is an integer generated to keep
the names unique. The IN tablespace-name clause defines the table space
where the rows of the table in the range are stored.

The RANGE granularity can vary by partition as in Example 4-8 on page 149. In
this example, we have accumulated the historical (pre-2007) data into two
partitions, because we are more concerned with current 2007 data. The current
2007 data resides in its own partition, and the 2008 data will also have its own
partition. Because of the improved scan performance, the current data and future
148 Database Partitioning, Table Partitioning, and MDC for DB2 9

data have improved performance because their partitions are in separate table
spaces.

Example 4-8 Range granularity

PARTITION inv_0 STARTING (MINVALUE) ENDING AT ('12/31/2001') INCLUSIVE
IN inv_tbsp00 ,
PARTITION inv_1 STARTING FROM ('01/01/2002') INCLUSIVE ENDING AT
('12/31/2006') INCLUSIVE IN inv_tbsp01 ,
PARTITION inv_2 STARTING FROM ('01/01/2007') INCLUSIVE ENDING AT
('12/31/2007') INCLUSIVE IN inv_tbsp02 ,
PARTITION inv_3 STARTING FROM ('01/01/2008') INCLUSIVE ENDING AT
('12/31/2008')IN inv_tbsp03;

To completely define the range for each data partition, you must specify sufficient
boundaries. Consider these guidelines when you define ranges on a partitioned
table:

� The STARTING clause specifies a low boundary for the data partition range.

This clause is mandatory for the lowest data partition range. You can define
the boundary as MINVALUE. The lowest data partition range is the data
partition with the lowest specified bound.

� The ENDING (or VALUES) clause specifies a high boundary for the data
partition range.

This clause is mandatory for the highest data partition range. You can define
the boundary as MAXVALUE. The highest data partition range is the data
partition with the highest specified bound.

� If you do not specify an ENDING clause for a data partition, the next greater
data partition must specify a STARTING clause.

Likewise, if you do not specify a STARTING clause, the previous data
partition must specify an ENDING clause.

� MINVALUE specifies a value that is smaller than any possible value for the
column type that is used.

You cannot specify MINVALUE and INCLUSIVE or EXCLUSIVE together.
Also, MINVALUE precludes the addition of a partition with a lower range.

� MAXVALUE specifies a value that is larger than any possible value for the
column type used.

You cannot specify MAXVALUE and INCLUSIVE or EXCLUSIVE together.
Also, MAXVALUE precludes the addition of a partition with a higher range.

� INCLUSIVE indicates that all values equal to the specified value are included
in the data partition containing this boundary.
 Chapter 4. Table partitioning 149

� EXCLUSIVE indicates that all values equal to the specified value are not
included in the data partition containing this boundary.

� The NULL clause specifies whether null values are sorted high or low when
considering data partition placement.

By default, null values are sorted high. Null values in the table partitioning key
columns are treated as positive infinity and are placed in a range ending at
MAXVALUE. If no data partition is defined, null values are considered
out-of-range values. Use the NOT NULL constraint if you want to exclude null
values from table partitioning key columns. LAST specifies that null values
appear last in a sorted list of values. FIRST specifies that null values appear
first in a sorted list of values.

� When using the long form of the syntax, each data partition must have at least
one boundary specified.

� IN indicates the table space where the partition is to be located.

This table space can be a table space that is used for other partitions or an
individual table space for a particular partition.

If you choose a range granularity that is inappropriate, you cannot change the
range definitions “in place.”

Your options to change range definitions are:

� Export the data, drop the table, create a table, import data, or load data.

� Detach partitions, add partitions, or import data.

� Detach partitions, manipulate data into new tables that match the required
range specifications, and attach the resulting tables as the new partitions.

Automatically generated ranges
A simple way of creating many data partitions quickly and easily is to use
automatic generation. It is an appropriate method for equal-sized ranges based
on dates or numbers. However, there are limitations on the placement of data
and the naming of the data partitions. Example 4-9 on page 151 includes the
statement to create a partitioned table with automatically generated ranges. Note
the use of the EVERY option.
150 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 4-9 Automatically generated ranges

CREATE TABLE invoice_auto
 (custno BIGINT NOT NULL,
 transaction_date DATE NOT NULL,
 amount DECIMAL (15, 2) NOT NULL ,
 custname CHARACTER (10) NOT NULL)
PARTITION BY RANGE (transaction_date NULLS LAST)
 (STARTING FROM ('01/01/2000') INCLUSIVE
 ENDING AT ('12/31/2007') INCLUSIVE
 EVERY (1 YEARS)
) IN inv_all ;

Restrictions when using the automatically generated ranges include:

� MINVALUE and MAXVALUE are not supported in the automatically
generated form of the syntax.

� You can only specify one column for the range in the automatically generated
form of the syntax.

� Tables that you create by using the automatically generated form of the
syntax (containing the EVERY clause) are constrained to use a numeric,
date, or time type for the table partitioning key.

Manually generated ranges
Manual generation creates a new data partition for each range listed in the
PARTITION BY clause. This form of the syntax allows for greater flexibility when
you define ranges, therefore increasing your data and large object (LOB)
placement options. Example 4-10 on page 152 includes the statement for a table
with manually created ranges. Note the placement of each data partition in a
separate table space.
 Chapter 4. Table partitioning 151

Example 4-10 Manually generated ranges

CREATE TABLE invoice
 (custno BIGINT NOT NULL ,
 transaction_date DATE
 amount DECIMAL (15, 2) NOT NULL ,
 custname CHARACTER (10) NOT NULL ,
 time TIME NOT NULL,
 region INT NOT NULL)
PARTITION BY RANGE(transaction_date)
(PART inv_2000 STARTING('01/01/2000') ENDING('12/31/2000') INCLUSIVE IN inv_2000,
 PART inv_2001 STARTING('01/01/2001') ENDING('12/31/2001') INCLUSIVE IN inv_2001,
 PART inv_2002 STARTING('01/01/2002') ENDING('12/31/2002') INCLUSIVE IN inv_2002,
 PART inv_2003 STARTING('01/01/2003') ENDING('12/31/2003') INCLUSIVE IN INV_2003,
 PART inv_2004 STARTING('01/01/2004') ENDING('12/31/2004') INCLUSIVE IN INV_2004,
 PART inv_2006 STARTING('01/01/2006') ENDING('12/31/2006') INCLUSIVE IN inv_2006,
 PART inv_2007 STARTING('01/01/2007') ENDING('12/31/2007') INCLUSIVE IN inv_2007
);

Example 4-11 shows the use of multiple columns in the range definition.

Example 4-11 Range specification with two columns: year and month

CREATE TABLE invoice
 (custno INTEGER NOT NULL ,
 transaction_date DATE NOT NULL ,
 amount INTEGER NOT NULL ,
 cust_name CHARACTER (10) NOT NULL,
 inv_month INT NOT NULL GENERATED ALWAYS AS (MONTH(transaction_date)),
 inv_year INT NOT NULL GENERATED ALWAYS AS (YEAR(transaction_date)))
PARTITION BY RANGE (inv_year, inv_month)
 (PARTITION prt2004_1 STARTING FROM (2004,1) INCLUSIVE ENDING AT (2004,3) INCLUSIVE
 IN inv_tsd20041,
 PARTITION prt2004_2 STARTING FROM (2004,4) INCLUSIVE ENDING AT (2004,6) INCLUSIVE
 IN inv_tsd20042,
 PARTITION PRT2004_3 STARTING FROM (2004,7) INCLUSIVE ENDING AT (2004,9) INCLUSIVE
 IN INV_TSD20043,
 PARTITION PRT2004_4 STARTING FROM (2004,10) INCLUSIVE ENDING AT (2004,12) INCLUSIVE
 IN inv_tsd20044,
 PARTITION prt2005_1 STARTING FROM (2005,1) INCLUSIVE ENDING AT (2005,3) INCLUSIVE
 IN inv_tsd20051,
 PARTITION PRT2005_2 STARTING FROM (2005,4) INCLUSIVE ENDING AT (2005,6) INCLUSIVE
 IN INV_TSD20052,
 PARTITION prt2005_3 STARTING FROM (2005,7) INCLUSIVE ENDING AT (2005,9) INCLUSIVE
 IN inv_tsd20053,
 PARTITION prt2005_4 STARTING FROM (2005,10) INCLUSIVE ENDING AT (2005,12) INCLUSIVE
 IN inv_tsd20054);
152 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 4-12 shows the use of multiple columns of different data types. Here,
the range specification is year and region number.

Example 4-12 Range specification with multiple columns: year and region

(CREATE TABLE invoice
 (custno INTEGER NOT NULL ,
 transaction_date DATE NOT NULL ,
 amount INTEGER NOT NULL ,
 cust_name CHARACTER (10) NOT NULL,
 inv_year INT NOT NULL GENERATED ALWAYS AS (YEAR(transaction_date)),
 region INTEGER)
PARTITION BY RANGE (inv_year,region)
 (PARTITION prt2004_1 STARTING FROM (2004,1) INCLUSIVE ENDING AT (2004,3) INCLUSIVE

IN inv_ts2004r1,
 PARTITION prt2004_2 STARTING FROM (2004,4) INCLUSIVE ENDING AT (2004,6) INCLUSIVE
 IN inv_ts2004r4,
 PARTITION prt2004_3 STARTING FROM (2004,7) INCLUSIVE ENDING AT (2004,8) INCLUSIVE
 IN inv_ts2004r7,
 PARTITION prt2004_4 STARTING FROM (2004,9) INCLUSIVE ENDING AT (2004,10) INCLUSIVE
 IN inv_ts2004r9,
 PARTITION prt2005_1 STARTING FROM (2005,1) INCLUSIVE ENDING AT (2005,3) INCLUSIVE
 IN inv_ts20051,
 PARTITION prt2005_2 STARTING FROM (2005,4) INCLUSIVE ENDING AT (2005,6) INCLUSIVE
 IN inv_ts20054,
 PARTITION prt2005_3 STARTING FROM (2005,7) INCLUSIVE ENDING AT (2005,8) INCLUSIVE
 IN inv_ts20057,
 PARTITION prt2005_4 STARTING FROM (2005,9) INCLUSIVE ENDING AT (2005,10) INCLUSIVE
 IN inv_ts20059);

This is demonstrated in Example 4-13 on page 154 where the statement
depicted produces the error message shown below:

DB21034E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned:
SQL0636N Range specified for data partition "PRT2004_1" is not valid.
Reason code = "10". SQLSTATE=56016

Reason code 10 states:

The range overlaps with another partition. Each data partition must
have a well defined starting and ending boundary and each data value
must go into one and only one data partition. Also, if the same value

Note: When multiple columns are used as the table partitioning key, they are
treated as a composite key, which is similar to a composite key in an index in
that the trailing columns are dependent on the leading columns.
 Chapter 4. Table partitioning 153

(except MINVALUE or MAXVALUE) is used in the ending bound of one
partition and the starting bound of the next partition, then at least
one of these bounds must be defined as EXCLUSIVE.

This occurs because the trailing key parameter, in this case, year, is not the
varying parameter. The correct syntax is shown in Example 4-12 on page 153.

Example 4-13 Range specification: Trailing column dependency

PARTITION BY RANGE (region,inv_year)
 (PARTITION prt2004_1 STARTING FROM (1,2004) INCLUSIVE ENDING AT (3,2004) INCLUSIVE
 IN inv_ts2004r1,
 PARTITION prt2004_2 STARTING FROM (4,2004) INCLUSIVE ENDING AT (6,2004) INCLUSIVE
 IN inv_ts2004r4,
 PARTITION prt2004_3 STARTING FROM (7,2004) INCLUSIVE ENDING AT (8,2004) INCLUSIVE
 IN inv_ts2004r7,
 PARTITION prt2004_4 STARTING FROM (9,2004) INCLUSIVE ENDING AT (10,2004) INCLUSIVE
 IN inv_ts2004r9,
 PARTITION prt2005_1 STARTING FROM (1,2005) INCLUSIVE ENDING AT (3,2005) INCLUSIVE
 IN inv_ts20051,
 PARTITION prt2005_2 STARTING FROM (4,2005) INCLUSIVE ENDING AT (6,2005) INCLUSIVE
 IN inv_ts20054,
 PARTITION prt2005_3 STARTING FROM (7,2005) INCLUSIVE ENDING AT (8,2005) INCLUSIVE
 IN inv_ts20057,
 PARTITION prt2005_4 STARTING FROM (9,2005) INCLUSIVE ENDING AT (10,2005) INCLUSIVE
 IN inv_ts20059);

4.2.6 Handling large objects

Large objects, by default, are stored in the same table space as the
corresponding data objects. This default applies whether the partitioned table
uses only one table space or multiple table spaces. That is, when a partitioned
table’s data is stored in multiple table spaces, the large object data is also stored
in multiple table spaces.

You can override the default behavior by using the LONG IN clause of the
CREATE TABLE statement. You can also specify a list of table spaces for the
table where long data is to be stored. The space specified in the LONG IN clause
must be a large table space.

You can specify a particular table space for all long data or specify a table space
for the long data belonging to individual partitions. Example 4-14 on page 155 is
an example of using a separate table space for the long data in each partition.
Using this approach is called storing long data remotely (remote from the data).
Note that you can specify the same table space for the long data of multiple
partitions in the same way that you can specify the data table spaces.
154 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 4-14 Specifying table spaces for long data

CREATE TABLE invoice (
custno BIGINT NOT NULL ,
transaction_date DATE NOT NULL ,
amount DECIMAL (15, 2) NOT NULL ,
custname CHARACTER (10) NOT NULL ,
time TIME NOT NULL,
region INT NOT NULL)
PARTITION BY RANGE (TRANSACTION_DATE NULLS LAST)
 (PARTITION INV_0 STARTING FROM (MINVALUE) INCLUSIVE ENDING AT
 ('12/31/2001') EXCLUSIVE IN inv_tbsp00 LONG IN inv_tbspl0,
 PARTITION INV_1 STARTING FROM ('01/01/2002') INCLUSIVE ENDING AT
 ('12/31/2003') EXCLUSIVE IN inv_tbsp01 LONG IN inv_tbspl1,
 PARTITION INV_2 STARTING FROM ('01/01/2004') INCLUSIVE ENDING AT
 ('12/31/2005') EXCLUSIVE IN inv_tbsp02 LONG IN inv_tbspl2,
 PARTITION INV_3 STARTING FROM ('01/01/2006') INCLUSIVE ENDING AT
 ('12/31/2007') EXCLUSIVE IN inv_tbsp03 LONG IN inv_tbspl2);

In the next example, Example 4-15, there is a long table space, INV_TBSPL99,
allocated for the partitions that have no long table space specified.

Example 4-15 Specifying a collective long table space

CREATE TABLE testtab(
 custno BIGINT NOT NULL ,
 transaction_date DATE NOT NULL ,
 amount DECIMAL (15, 2) NOT NULL ,
 custname CHARACTER (10) NOT NULL ,
 time TIME NOT NULL,
 region INT NOT NULL)
 LONG IN inv_tbspl99
PARTITION BY RANGE (TRANSACTION_DATE NULLS LAST)(
 PARTITION INV_0 STARTING FROM (MINVALUE) INCLUSIVE ENDING AT
 ('12/31/2001') EXCLUSIVE IN inv_tbsp00 LONG IN inv_tbspl0,
 PARTITION INV_1 STARTING FROM ('01/01/2002') INCLUSIVE ENDING AT
 ('12/31/2003') EXCLUSIVE IN inv_tbsp01 LONG IN inv_tbspl1,
 PARTITION INV_2 STARTING FROM ('01/01/2004') INCLUSIVE ENDING AT
 ('12/31/2005') EXCLUSIVE IN inv_tbsp02,
 PARTITION INV_3 STARTING FROM ('01/01/2006') INCLUSIVE ENDING AT
 ('12/31/2007') EXCLUSIVE IN inv_tbsp03);

Note: You cannot store long data remotely for certain data partitions and store
long data locally for other partitions.
 Chapter 4. Table partitioning 155

4.2.7 Optimal storage configurations for table partitioning

This section discusses possible storage configuration advantages.

Table spaces, file systems, and logical drives
Because of the relationship between the table spaces and file systems or logical
drives, there is an opportunity to manage the I/O performance of the individual
data partition. For instance, if each container is defined to an individual drive (or
group of drives), the I/O performance of one partition can be separated from
another. That is, one or more data partitions in the table can be independent of
others in terms of I/O performance.

For example, we can define each table space used by an individual partition to
an individual physical container by defining:

� For UNIX and Linux:

– A DMS table space specifying a file on a file system on a logical volume on
a physical drive so that each table space container is independent of the
other

– A DMS table space specifying a raw device

� For Windows:

– A DMS table space specifying a file on a logical drive on a physical drive

– A DMS table space specifying a raw device

The other method is to allocate the less frequently used partition containers to
slower disk. But, remember that there is an underlying improvement in the way
that the optimizer might ignore certain partitions on scans depending on the
nature of the transaction.

The table, partition, table space, and container layout in Figure 4-16 on page 157
suggests the possibilities of data distribution across disk that can be achieved
with table partitioning. In this case, the older accumulated pre-2000 data is
accumulated on four file systems (or raw devices) utilizing older, slower drives.
The data for the year 2000 is kept on three file systems (or raw devices) utilizing
intermediate performance drives, and the current year data (2007) is spread over
multiple file systems (or raw devices) utilizing the highest performance drives.
156 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 4-16 Relationships of partitions, table spaces, and containers

4.2.8 Partition elimination

Partition elimination is the ability of the optimizer to determine that certain
ranges do not need to be accessed at all for a query. Partition elimination
improves the performance for many queries. Figure 4-17 on page 158 shows
how this works for a simple table scan. The optimizer determines that the data
range specified in the WHERE clause resides on partition 2 and 3; therefore,
only these partitions are scanned.

INV_PRE00 Table space

INV_PRE00 Partition
INV_2000 Table space

INV_2000 Partition

Cont1Cont1

INV_2007 Partition

Cont2Cont2

Cont3Cont3

Cont4Cont4

Cont5Cont5

Cont6Cont6

Cont1Cont1

Cont2Cont2

Cont3Cont3

Cont4Cont4

Cont1Cont1

Cont2Cont2

Cont3Cont3

INV_2007 Table space

....

INVOICE TABLE
 Chapter 4. Table partitioning 157

Figure 4-17 Partition elimination: Table scan

Partition elimination also applies for index scans. For example, many plans are
possible for the query shown in Figure 4-18 on page 159. Without partitioning,
one likely plan is to use “index ANDing.” Index ANDing performs these tasks:

� Read all relevant index entries from each index.
� Save both sets of record IDs (RIDs).
� Match both sets of RIDs to see which occurred in both indexes.
� Use those to fetch the rows.

With partitioning, each RID in the index contains the datapartID. Instead of
reading from the l_shipdate index, the optimizer looks at the datapartID to
discover if the row might be in the desired date range. It saves half the I/O in
indexes. Index ANDing passes RIDs back up to the runtime routine, “ands” them,
and then goes back to the kernel to fetch them. In contrast, partition elimination
skips irrelevant RIDs without ever returning them to run time, thus, improving
performance.

a >= 0
a < 20

a >= 21
a < 40

a >= 41
a < 60

a >= 61
a < 80

scan

select * from tab1 where a>32 and a<54
158 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 4-18 Partition elimination: Index scan

4.3 Administration and management

Consider these topics for your administration and management of partitioned
tables.

4.3.1 Utilities

These are DB2 utilities affected by table partitioning.

BACKUP and RESTORE
Table partitioning provides the opportunity to reduce backup times for large
tables, because the individual partitions can be backed up if they are allocated to
different table spaces.

LOAD or IMPORT
LOAD or IMPORT can be used to load a partitioned table. The table is regarded
by the utility as a standard table for the purposed of loading data with the
following restrictions:

� Consistency points are not supported.

SELECT l_shipdate, l_partkey, l_returnflag
FROM lineitem
WHERE l_shipdate BETWEEN

'01/01/1993' AND '03/31/1993'
AND l_partkey=49981

l_shipdate l_partkey

present
in both?

fetch

index
anding

RIDs for
‘49981’

RIDs for
date range

partition
elimination

l_partkey

matching
range?

RIDs for
‘49981’

fetch
 Chapter 4. Table partitioning 159

� Loading data into a subset of data partitions while the remaining data
partitions remain fully online is not supported.

� The exception table used by a load operation cannot be partitioned.

� A unique index cannot be rebuilt when the LOAD utility is running in insert
mode or restart mode and the load target table has any detached
dependents.

� Exact ordering of input data records is not preserved when loading partitioned
tables. Ordering is only maintained within the data partition.

� The LOAD utility does not access any detached or attached data partitions.
Data is inserted into visible data partitions only (visible data partitions are
neither attached nor detached).

� A load replace operation does not truncate detached or attached data
partitions.

� Because the LOAD utility acquires locks on the catalog system tables, the
LOAD utility waits for any uncommitted ALTER TABLE transactions.

REORG
There are restrictions when using REORG TABLE for partitioned tables:

� You cannot use REORG on a partitioned table in a DMS table space during
an online backup of any table space in which the table resides (including
LOBs and indexes). You get an SQL2048 error. This does not occur when the
table spaces are SMS.

� REORG is supported at the table level. You can reorganize an individual data
partition by detaching the data partition, reorganizing the resulting
non-partitioned table, and then reattaching the data partition. The table must
have an ACCESS_MODE in SYSCAT.TABLES of Full Access.

� Reorganization skips data partitions that are in a restricted state due to an
ATTACH or DETACH operation.

� If an error occurs, the non-partitioned indexes of the table are marked as bad
indexes and are rebuilt on the next access to the table.

� If a reorganization operation fails, certain data partitions might be in a
reorganized state and others might not. When the REORG TABLE command
is reissued, all the data partitions are reorganized regardless of the data
partitions’ reorganization state.

� When reorganizing indexes on partitioned tables, we recommend that you
perform a RUNSTATS operation after asynchronous index cleanup is
complete in order to generate accurate index statistics in the presence of
detached data partitions. To determine whether there are detached data
partitions in the table, you can check the status field in
160 Database Partitioning, Table Partitioning, and MDC for DB2 9

SYSDATAPARTITIONS and look for the value “I” (index cleanup) or “D”
(detached with dependent MQT).

� The REORG INDEXES or REORG TABLE command is not supported on a
partitioned table in ALLOW WRITE or ALLOW READ modes (except when
CLEANUP ONLY is specified for REORG INDEXES).

4.3.2 DB2 Explain

Visual explain provides detailed information about which data partitions are used
when a query is run. The db2exfmt command also provides details indicating
which partitions are used when a query takes place. Example 4-16 contains the
output when DB2 Explain has been used to analyze the following query:

SELECT * FROM INVOICE
WHERE TRANSACTION_DATE >='01/01/2000'
AND TRANSACTION_DATE<='12/31/2000'

� Table partition label (circled in Example 4-16)

In the access plan, table partitioned tables are labeled with the tag
DP-TABLE.

� List of data partitions accessed (circled in Example 4-16)

Look for “List of data partitions accessed” to see which partitions are to be
scanned after irrelevant ones have been excluded by partition elimination. In
this example in Example 4-16, the information provided indicates that one
partition (partition 3) was used in the scan.

DPLSTPRT: (List of data partitions accessed)
3

DPNUMPRT: (Number of data partitions accessed)
1

� DP Elim Predicates (circled in Example 4-16)

When partition elimination is used, you can see the boundaries of the ranges
scanned in the “Predicates” section labeled with DP Elim Predicates in
Example 4-16.

Notice that the terminology used is the same terminology that is used for
index scans. Here, you can see start and stop predicates from your query that
delimit the portions of the table that is scanned.

Example 4-16 db2exfmt output

DB2 Universal Database Version 9.1, 5622-044 (c) Copyright IBM Corp. 1991, 2006
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool
 Chapter 4. Table partitioning 161

******************** EXPLAIN INSTANCE ********************
DB2_VERSION: 09.01.2
SOURCE_NAME: SYSSH200
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2007-03-29-15.08.56.265004
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

Parallelism: None
CPU Speed: 2.282997e-007
Comm Speed: 100
Buffer Pool size: 1014
Sort Heap size: 53
Database Heap size: 1263
Lock List size: 3251
Maximum Lock List: 92
Average Applications: 1
Locks Available: 254228

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 65 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT *
FROM DB2ADMIN.INVOICE
where transaction_date > '01/01/2002' and transaction_date < '03/01/2002'

Optimized Statement:

SELECT Q1.CUSTNO AS "CUSTNO", Q1.TRANSACTION_DATE AS "TRANSACTION_DATE",
 Q1.AMOUNT AS "AMOUNT", Q1.CUSTNAME AS "CUSTNAME"
FROM DB2ADMIN.INVOICE AS Q1
162 Database Partitioning, Table Partitioning, and MDC for DB2 9

WHERE (Q1.TRANSACTION_DATE < '2002-03-01') AND ('2002-01-01' <
 Q1.TRANSACTION_DATE)

Access Plan:

Total Cost: 4960.79
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 31773
 TBSCAN
 (2)
 4960.79
 3336
 |
 3e+006
DP-TABLE: DB2ADMIN
 INVOICE

Extended Diagnostic Information:

No extended Diagnostic Information for this statment.

Plan Details:

1) RETURN: (Return Result)
Cumulative Total Cost: 4960.79
Cumulative CPU Cost: 5.04807e+008
Cumulative I/O Cost: 3336
Cumulative Re-Total Cost: 4960.79
Cumulative Re-CPU Cost: 5.04805e+008
Cumulative Re-I/O Cost: 3336
Cumulative First Row Cost: 10.7846
Estimated Bufferpool Buffers: 3336

Arguments:

BLDLEVEL: (Build level)

DB2 v9.1.200.98 : s070210
 Chapter 4. Table partitioning 163

STMTHEAP: (Statement heap size)
2048

Input Streams:

2) From Operator #2

Estimated number of rows: 31773
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q2.CUSTNAME+Q2.AMOUNT+Q2.TRANSACTION_DATE
+Q2.CUSTNO

2) TBSCAN: (Table Scan)
Cumulative Total Cost: 4960.79
Cumulative CPU Cost: 5.04807e+008
Cumulative I/O Cost: 3336
Cumulative Re-Total Cost: 4960.79
Cumulative Re-CPU Cost: 5.04805e+008
Cumulative Re-I/O Cost: 3336
Cumulative First Row Cost: 10.7846
Estimated Bufferpool Buffers: 3336

Arguments:

DPESTFLG: (Number of data partitions accessed are Estimated)

FALSE
DPLSTPRT: (List of data partitions accessed)

3
DPNUMPRT: (Number of data partitions accessed)

1
GLOBLOCK: (Global Lock intent)

INTENT SHARE
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

INTENT SHARE
TBISOLVL: (Table access Isolation Level)

CURSOR STABILITY
164 Database Partitioning, Table Partitioning, and MDC for DB2 9

Predicates:

2) Sargable Predicate

Comparison Operator: Less Than (<)
Subquery Input Required: No
Filter Factor: 0.661248

Predicate Text:

(Q1.TRANSACTION_DATE < '2002-03-01')

3) Sargable Predicate
Comparison Operator: Less Than (<)
Subquery Input Required: No
Filter Factor: 0.349343

Predicate Text:

('2002-01-01' < Q1.TRANSACTION_DATE)

DP Elim Predicates:

Range 1)

Stop Predicate: (Q1.TRANSACTION_DATE < '2002-03-01')
Start Predicate: ('2002-01-01' < Q1.TRANSACTION_DATE)

Input Streams:

1) From Object DB2ADMIN.INVOICE

Estimated number of rows: 3e+006
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.CUSTNAME+Q1.AMOUNT+Q1.CUSTNO
+Q1.TRANSACTION_DATE

Output Streams:

2) To Operator #1

Estimated number of rows: 31773
Number of columns: 4
Subquery predicate ID: Not Applicable
 Chapter 4. Table partitioning 165

Column Names:

+Q2.CUSTNAME+Q2.AMOUNT+Q2.TRANSACTION_DATE
+Q2.CUSTNO

Objects Used in Access Plan:

Schema: DB2ADMIN
Name: INVOICE
Type: Data Partitioned Table

Time of creation: 2007-03-29-08.34.37.296002
Last statistics update: 2007-03-29-09.05.17.937000
Number of columns: 4
Number of rows: 3000000
Width of rows: 36
Number of buffer pool pages: 30022
Number of data partitions: 9
Distinct row values: No
Tablespace name: <VARIOUS>
Tablespace overhead: 10.500000
Tablespace transfer rate: 0.140000
Source for statistics: Single Node
Prefetch page count: 16
Container extent page count: 16
RCT pages: -1
RCT full key cardinality: -1
Index first key cardinality: -1
Index first 2 keys cardinality: -1
Index first 3 keys cardinality: -1
Index first 4 keys cardinality: -1

4.3.3 Locking considerations

In addition to an overall table lock, there is a lock for each data partition of a
partitioned table. This allows for finer granularity and increased concurrency
compared to a non-partitioned table. The new data partition lock (lock object
identifier name is TABLE_PART_LOCK) is identified in the output of the db2pd
command, event monitors, administrative views, and table functions.

When accessing a table, locking behavior obtains the table lock first and then
acquires data partition locks as dictated by the data accessed. Access methods
and isolation levels might require locking the data partitions that are not in the
result set. After these data partition locks are acquired, they might be held as
long as the table lock. For example, a cursor stability (CS) scan over an index
166 Database Partitioning, Table Partitioning, and MDC for DB2 9

might keep the locks on previously accessed data partitions to reduce the costs
of reacquiring the data partition lock if that data partition is referenced in
subsequent keys. The data partition lock also carries the cost of ensuring access
to the table spaces. For non-partitioned tables, table space access is handled by
the table lock. Therefore, data partition locking occurs even if there is an
exclusive or share lock at the table level for a partitioned table.

Finer granularity allows one transaction to have exclusive access to a given data
partition and avoid row locking while other transactions are able to access other
data partitions. This can be a result of the plan chosen for a mass update or due
to escalation of locks to the data partition level. The table lock for many access
methods is normally an intent lock, even if the data partitions are locked in share
or exclusive. This allows for increased concurrency. However, if non-intent locks
are required at the data partition level and the plan indicates that all data
partitions can be accessed, a non-intent lock might be chosen at the table level
to prevent deadlocks between data partition locks from concurrent transactions.

You can obtain more information from the DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/c0021606.htm

4.3.4 Troubleshooting

You might encounter problems when creating tables, adding partitions, attaching
partitions, or detaching partitions. Reasons for these problems can be:

� An ATTACH fails if the source table data does not conform to the range
specified for the new partition in the target table.

� The source table must be an existing non-partitioned table or a partitioned
table with only a single data partition.

� The table definition for a source table must match the target table.The
number, type, and ordering of columns must match for the source and target
tables.

� The source table must not be a hierarchical table (typed table).

� The source table must not be a range-clustered table (RCT).

� The page size of table spaces must match. If they do not match, the result is
message SQL1860.

� Detaching fails because you are detaching to an existing object.

The DB2 Information Center has more in-depth information about problems that
you might encounter, restrictions, and usage guidelines and can be accessed by
using this link:
 Chapter 4. Table partitioning 167

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/c0021606.htm

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/c0022680.htm

4.3.5 Using partitioned tables in your existing database

These are the approaches that you need to use to migrate an existing table or
view to a partitioned table:

� Migrating regular tables: Use either one of the following approaches:

– Create a new, empty partitioned table and use the LOAD from CURSOR
to move the data from the old table directly into the partitioned table
without any intermediate steps.

– Unload the source table by using the EXPORT utility or high performance
unload, create a new, empty partitioned table, and use the LOAD
command to populate an empty partitioned table.

� Migrating UNION ALL views:

– Create a partitioned table with a single dummy data partition and then
attach all of the tables.

There is a requirement that the table spaces of the tables involved in this
migration must have the same characteristics. They must all be LARGE or
REGULAR, the same page size, and the same extent size.

Converting regular tables
To migrate data from a DB2 9.1 table into a partitioned table, you can use the
LOAD command, use LOAD FROM ... CURSOR, or INSERT INTO SELECT ...
FROM to migrate data to an empty partitioned table. Example 4-17 provides
an example of converting a regular table to a partitioned table.

Example 4-17 Converting regular tables

-- Starting with a regular table TABLE1 defined with columns
-- COL1(INT) & COL2(INT) and already populated.
-- Create a new partitioned table, TABLE2 with the required matching
-- parameters.
--

CREATE TABLE table11 (col1 INT, col2 INT) PARTITION BY RANGE
(col1)(STARTING FROM FROM 0 ENDING AT 100 EVERY 5)

--Load the data from TABLE1 into TABLE2 using LOAD FROM ... CURSOR
--

DECLARE c1 CURSOR FOR SELECT * FROM table1;
LOAD FROM c1 OF CURSOR INSERT INTO table2 ;
168 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/c0022680.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/c0022680.htm

--Or load the data from TABLE1 into TABLE2 using two step LOAD
--

EXPORT TO TABLE1.DEL OF DEL SELECT * FROM table1;
LOAD FROM TABLE1.DEL OF DEL INSERT INTO table2

If the any of the data is outside of the partition boundary, the load completes but
with this message:

SQL0327N The row cannot be inserted into table because it is outside
the bounds of the defined data partition ranges. SQLSTATE=22525

Converting UNION ALL views
You can convert DB2 9.1 data in a UNION ALL view into a partitioned table.
Using the ALTER TABLE ...ATTACH operation, you can achieve conversion with
no movement of data in the base table. Indexes and dependent views or
materialized query tables (MQTs) must be re-created after the conversion.

One approach is to create a partitioned table with a single dummy data partition
and ATTACH all of the tables of the UNION ALL view. Drop the dummy data
partition after the first ATTACH to avoid any problems that might arise from
overlapping ranges. Example 4-18 provides an example of converting a UNION
ALL view to a partitioned table.

Example 4-18 Converting UNION ALL views

-- DDL of the tables included in the view

CREATE TABLE invoice_20xx(CUSTNO BIGINT NOT NULL,
transaction_date DATE NOT NULL,
amount DECIMAL(15,2) NOT NULL,
custname CHAR(10) NOT NULL);

-- DDL of the view that includes tables INVOICE_2000 through
-- INVOICE_2007

CREATE VIEW invoice_v2000_2007 AS
(SELECT * FROM invoice_2000 UNION ALL
SELECT * FROM invoice_2001 UNION ALL
SELECT * FROM invoice_2002 UNION ALL
SELECT * FROM invoice_2003 UNION ALL

Note: The data table spaces for a partitioned table must be either all SMS, all
regular DMS, or all large DMS.
 Chapter 4. Table partitioning 169

SELECT * FROM invoice_2004 UNION ALL
SELECT * FROM invoice_2005 UNION ALL
SELECT * FROM invoice_2006 UNION ALL
SELECT * FROM invoice_2007);

-- Create the partitioned table with the single dummy partition

CREATE TABLE invoice(
custno BIGINT NOT NULL,
transaction_date DATE NOT NULL,
amount DECIMAL(15,2),
custname CHAR(10))
PARTITION BY RANGE (transaction_date)
(PART dummy STARTING FROM '01-01-1970' ENDING AT '01-01-1970');

-- Add the first partition

ALTER TABLE invoice ATTACH PARTITION
STARTING FROM '01-01-2000' ENDING AT '12-31-2000'
FROM invoice_2000;

-- Detach the dummy partition and drop the resulting table

ALTER TABLE invoice DETACH PARTITION dummy INTO dummy;
DROP TABLE dummy;

-- Attach remaining partitions

ALTER TABLE invoice ATTACH PARTITION
STARTING FROM '01-01-2001' ENDING AT '12-31-2001'
FROM INVOICE_2001;

ALTER TABLE invoice ATTACH PARTITION
STARTING FROM '01-01-2002' ENDING AT '12-31-2002'
FROM invoice_2002;

ALTER TABLE invoice ATTACH PARTITION
STARTING FROM '01-01-2003' ENDING AT '12-31-2003'
FROM invoice_2003;

ALTER TABLE invoice ATTACH PARTITION
STARTING FROM '01-01-2004' ENDING AT '12-31-2004'
FROM invoice_2004;

ALTER TABLE invoice ATTACH PARTITION
170 Database Partitioning, Table Partitioning, and MDC for DB2 9

STARTING FROM '01-01-2005' ENDING AT '12-31-2005'
FROM invoice_2005;

ALTER TABLE invoice ATTACH PARTITION
STARTING FROM '01-01-2006' ENDING AT '12-31-2006'
FROM invoice_2006;

ALTER TABLE invoice ATTACH PARTITION
STARTING FROM '01-01-2007' ENDING AT '12-31-2007'
FROM invoice_2007;

-- Issue SET INTEGRITY on table

SET INTEGRITY FOR invoice IMMEDIATE CHECKED;

4.3.6 Authorization levels

To alter a table to attach a data partition, the privileges held by the authorization
ID of the statement must also include at least one of the following privileges or
authorization levels on the source table:

� SELECT privilege on the table and DROPIN privilege on the schema of the
table

� CONTROL privilege on the table

� SYSADM or DBADM authority

In addition, altering a table to attach a data partition requires at least one of the
following privileges or authorization levels on the target table:

� ALTER and INSERT privileges on the table
� CONTROL privilege on the table
� SYSADM or DBADM authority

To alter a table to detach a data partition, the privileges held by the authorization
ID of the statement must also include at least one of the following authorization
levels or privileges on the target table of the detached partition:

� CREATETAB authority on the database and USE privilege on the table
spaces used by the table, as well as one of these:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the new table does not exist

– CREATEIN privilege on the schema, if the schema name of the new table
refers to an existing schema
 Chapter 4. Table partitioning 171

� SYSADM or DBADM authority

In addition, altering a table to detach a data partition requires at least one of the
following privileges or authorization levels on the source table:

� SELECT, ALTER, and DELETE privileges on the table
� CONTROL privilege on the table
� SYSADM or DBADM authority

4.4 Best practices

In general, the following best practices apply to the table partitioning:

� Consider table partitioning for large fact tables in a data warehouse.
� Partition on date column.
� Make ranges match the size of the roll-out.
� Use DETACH for fast roll-out.
� Use table partitioning in combination with Database Partitioning Feature

(DPF) and multi-dimensional clustering (MDC).
� Spread data across the table spaces.
� Use ADD plus LOAD for roll-in.

Define ranges
When defining ranges for your partitioned table, consider these
recommendations:

� Partition on date.

Fast roll-out by using DETACH is one of the greatest benefits of table
partitioning. You need to partition on a date column to get this benefit. Side
benefits include:

– You receive performance benefits for common business intelligence
(BI)-type queries.

Many BI queries are date-oriented; therefore, you often get a performance
boost from partition elimination.

– Partitioning on a date column allows the separation of active and static
data for reduced backup volume.

You can tailor your backups to back up active data more frequently and
static data less often.
172 Database Partitioning, Table Partitioning, and MDC for DB2 9

– Fast roll-out by using DETACH reduces the need for REORG TABLE.

One of the key reasons for reorganizing a table is to reclaim space after
bulk deletes. If DETACH is used instead of bulk delete, this reason goes
away.

� Choose the size of ranges to match the roll-out.

The range size needs to match your roll-out strategy. Ranges typically are by
month or quarter, which yields a manageable number of ranges. You can
have ranges smaller than the required roll-out amount and roll-out several
ranges at a time. For example, define the range by month and roll-out three
months at a time each quarter.

Spreading data
Separation of indexes and table data is not at all required, but we recommend
that you separate indexes and data to simplify space planning and your backup
strategy. Advanced performance tuning often results in putting indexes in
separate table spaces.

Index placement
For partitioned tables, indexes are separate objects. Different indexes of the
same table can be placed in different table spaces. Individual indexes can then
be reorganized independently. When placing the index, consider these actions:

� Separate indexes and table data to simplify size planning:

– The size for each month’s worth of table data is fairly predictable.

– For space planning, putting the indexes and table data together is
relatively more complicated than separating the index and the table data
into different table spaces.

– Separating indexes is necessary for certain performance tuning.

� Specify the index placement at CREATE INDEX time.

If you do not specify the table space when you CREATE INDEX, it looks at
what you specified for INDEX IN when you created the table. If you did not
specify anything for INDEX IN, the index is placed in the table space that held
the first range at the time the table was created. Because indexes tend to be
much larger than one range of the table, this often causes you to run out of
space unexpectedly.

� Default placement is undesirable, because all indexes end up together with
one range.
 Chapter 4. Table partitioning 173

Data placement for backup
Spreading ranges across more than one table space allows finer granularity of
backups. Consider grouping current data for frequent backup and grouping
historical data for infrequent backup.

The ability to spread large tables across multiple table spaces via table
partitioning means that you can make each table space backup smaller. You still
backup the same total amount of data, but you have flexibility to do it in more
manageable chunks. Better yet, you can arrange the schedule to back up active
data more frequently than historical data.

Restores TO END OF LOG can also be more granular. That is, you can recover
from a disk failure by restoring only the affected table spaces. However,
point-in-time roll-forward must include all table spaces related to the table.

By separating active and historical data, you can back up the historic data less
frequently. Indexes that contain references to active data can be rebuilt rather
than restored.

Smoother roll-in
To facilitate a smoother roll-in process, consider these actions:

� Issue COMMIT WORK after ATTACH and SET INTEGRITY:

– ATTACH locks the whole table until committed.
– New data is invisible after SET INTEGRITY is issued until committed.

� SET LOCK TIMEOUT WAIT:

– Prevents SET INTEGRITY from failing on a lock conflict at the end.

� Plan for query draining by ATTACH:

– ATTACH does not complete until it drains existing queries for the table.
– Meanwhile, no new queries can start.

� Use a single SET INTEGRITY statement:

– Include all refresh immediate MQTs and the base table in the same SET
INTEGRITY statement.

– MQTs that are not refreshed in the first pass go offline.

– Multiple SET INTEGRITY statements can mean more passes through the
data.

� Specify ALLOW WRITE ACCESS with SET INTEGRITY:

– ALLOW NO ACCESS is faster because it gets an exclusive lock.
– The default is the old, offline behavior.
– ALLOW READ ACCESS is also available.
– The trade-off is that higher availability options might run more slowly.
174 Database Partitioning, Table Partitioning, and MDC for DB2 9

� Make use of exception tables:

– Consider performing roll-in and roll-out together (also known as rotate).

– ATTACH and DETACH in the same transaction minimizes the time that
the table is unavailable.
 Chapter 4. Table partitioning 175

176 Database Partitioning, Table Partitioning, and MDC for DB2 9

Chapter 5. Multi-dimensional clustering

This chapter provides information for planning, implementing, and administering
multi-dimensional clustered (MDC) tables. In addition, we illustrate application
programming techniques that leverage the components of the MDC technology.

5

© Copyright IBM Corp. 2007. All rights reserved. 177

5.1 Planning for the use of MDC on a table

Deciding to use MDC is a table-by-table decision. However, the choices that you
make during the planning phase might affect other database decisions,
particularly, the page size and extent size for the table spaces that will contain
the MDC tables. Because you cannot alter page size and extent size after the
table space is created (without dropping and recreating the table space),
carefully consider the values that you select for the page size and the extent size.

5.1.1 Verify database configuration

If the MDC table resides in a system-managed (SMS) table space, be sure that
multi-page file allocation is enabled. To check, use db2 get db cfg for
<database> command. Databases created prior to DB2 9 might not have this
feature enabled. Run command db2empfa to enable the feature. On a partitioned
database, you must run db2empfa on each partition.

For additional information about the db2empfa command, see:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/r0002054.htm

5.1.2 Determine query workload

Knowledge of the current or planned workload of SQL queries on the table is a
prerequisite to designing the MDC structure of a table. Even if your database is
still in the planning stage, a general idea of the types of queries that you will use
on the table is necessary. The goal is to recognize columns that are potential
candidates for dimensions (for the definition of dimension, see “Dimension” on
page 11). When looking for dimension candidates, focus on identifying columns
that are:

� Of low cardinality

Low cardinality is relative. In a table of 5,000,000 rows, a cardinality of 1000
is fairly low, but that same cardinality in a 5,000 row table is high.

� Relatively static in value

If a dimension column changes value, extra processing is needed to move the
row to an appropriate cell, update any row-level indexes, and possibly update
the dimension block indexes.
178 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0002054.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0002054.htm

� Frequently used in queries

Because the primary benefit of using MDC tables is query performance, the
more frequently that you use dimension columns in queries, the more
performance gain is available.

5.1.3 Identify dimensions and columns

After you have a list of candidate columns, your next goal is to determine a set of
dimension columns. You need to decide:

� The number of dimensions

Every dimension that is defined on a table has its own dimension block index.
Therefore, each dimension can add additional overhead to insert, update, and
delete processing, but not to the same extent as a row-level index. A
row-level index is updated every time that a row in the table is inserted or
deleted, or when the key values are updated. A block index is updated only
when a new extent is added to the table or the last row is removed from an
extent. In most cases, from one to four dimensions is sufficient. MDC tables
are not required to have more than one dimension, although the term
“multi-dimensional” implies otherwise.

� The columns for each dimension

Good candidates for dimension columns include:

– Columns used for range, equality, and IN predicates
– Roll-in or roll-out of data
– Columns referenced in a GROUP BY clause
– Columns referenced in an ORDER BY clause
– Combinations of all of the previous candidates
– Columns in a fact table that are foreign keys to dimension tables in a star

schema

� The organization of any multi-column dimension

A dimension can be composed of more than one column. The order of the
columns in the dimension is critical to ensure that queries use the dimension
block index effectively. For example, if the dimension consists of columns
COL1 and COL2, in that order, query predicates (and ORDER BY or GROUP
BY clauses) that reference COL2 need to also reference COL1. If not, the
database server cannot start the index search at a known COL1 value but
has to scan the dimension block index from start to finish, or bypass the block
index completely.
 Chapter 5. Multi-dimensional clustering 179

5.1.4 Estimate space requirements

After you decide on a tentative list of dimensions, estimate the space
requirements for the table and determine if the dimensions are suitable. This is a
critical step in the process. If the dimensions that you have are inappropriate, the
space requirements might be much higher than you expect. The basic steps are:

1. Gather the necessary statistics.
2. Estimate the average rows for a cell.
3. Determine candidate page size and extent size combinations.
4. Select a page size and extent size combination.
5. Estimate the average blocks for a cell.
6. Estimate the total data space required.

We discuss each of the steps next.

Gather the necessary statistics
In order to compute the space requirements, collect (or estimate) the following
information:

� Cardinality of each dimension (how many distinct values exist)

For new tables, you either estimate cardinality or base it on known
information. For example, if you have a STATE column that contains the state
abbreviations for U.S. customers, you can estimate that cardinality as 50).

For existing tables, use a query similar to Example 5-1.

Example 5-1 Counting cardinality for dimensions

SELECT COUNT(DISTINCT col1), COUNT(DISTINCT col2), ...
 COUNT(DISTINCT coln)
FROM table

� Average row length

For new tables, estimate the average row length based on known column
lengths for fixed length columns, and either estimate average length or
maximum length for variable length columns. For details about estimating an
average row length, refer to the DB2 9 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

For existing tables, make sure that the statistics are up-to-date (use
RUNSTATS to update, if necessary). Ideally, reorganize the table and then
use RUNSTATS to update statistics. Then, run REORGCHK CURRENT
STATISTICS ON TABLE and compute the average row size as TSIZE/CARD
(Table size divided by number of rows) from the output.
180 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

Alternatively, you can compute average row size by summing the
AVGCOLLEN (average column length) column from the SYSCAT.COLUMNS
view for all columns in the table, plus one for each nullable column, plus four
for each variable length column. The SQL in Example 5-2 is a query that
performs this computation.

Example 5-2 Computing average row size

SELECT SUM(AVGCOLLEN + (CASE NULLS WHEN 'Y' THEN 1 ELSE 0 END) +
(CASE TYPENAME WHEN 'VARCHAR' THEN 4 ELSE 0 END)) FROM
SYSCAT.COLUMNS WHERE TABSCHEMA='TPCD' AND TABNAME='CUSTOMER'

� Page size and extent (block) size

For existing tables, you can get this information by using the following
command and examining the output for the table space that the table uses:

db2 list tablespaces show detail

If you do not know the table space that is used, execute the following
statement to determine the table space name:

SELECT TBSPACE FROM SYSCAT.TABLES WHERE TABNAME='<table name>' AND
TABSCHEMA='<table schema>'

� Number of rows

For new tables, estimate the number of rows in the table using whatever
information is available.

For existing tables, use either CARD from the SYSCAT.TABLES entry for the
table or execute a count on the table.

� Number of cells

This is the number of unique combinations of the dimension columns. For a
new table, estimate this number. You can compute a convenient upper limit
for the number of cells by multiplying all of the expected cardinalities of the
dimensions together. This assumes that the dimensions are independent,
which might not be the case. If several of the dimensions are dependent, the
estimate can be lowered. For example, if one dimension is month (cardinality
12), and another is day of the month (cardinality 31), the initial upper limit is
12 x 31 or 372. However, we know that not all months have 31 days, and we
can confidently lower that upper limit to 366.

For an existing table, you can get an accurate count of the number of cells
with the SQL shown in Example 5-3 on page 182.
 Chapter 5. Multi-dimensional clustering 181

Example 5-3 Computing number of cells for an existing table

SELECT COUNT(*) FROM
(SELECT DISTINCT col1, col2, ... coln FROM tab1) cell_list

Determine candidate page size and extent size combinations
For a new table, estimate the average number of rows in a cell. The simplest
approach is to divide the estimated row count by the estimated number of cells.

For existing tables, use the SQL in Example 5-4 to compute an average row
count, as well as minimum, maximum, and standard deviation.

Example 5-4 Computing average rows per cell

SELECT AVG(RowsPerCell) AS RowsPerCell,
 MIN(RowsPerCell) AS MinRowsPerCell,
 MAX(RowsPerCell) AS maxRowsPerCell,
 STDDEV(RowsPerCell) AS sdRowsPerCell
FROM (SELECT col1, col2, ... , colN, COUNT(*) RowsPerCell
 FROM table
 GROUP BY col1, col2, ... , colN
) cell_table

Compute the maximum rows per page and extent size for various combinations.
A table similar to Table 5-1 on page 183 might be useful. The formulas for the
columns in the table are:

Rows in a page = (page size - 68) / (average row size + 10) rounded
down to an integer

Rows in extent = rows in a page x extent size

Number of extents needed for a cell = rows in cell / rows in extent

The probability of a cell smaller than one extent is the probability assuming a
normal distribution of rows in a cell, using the average and standard deviation
from the SQL in Example 5-4 and calculated using a cumulative distribution
function. We use the Lotus® 1-2-3® spreadsheet function to calculate the
probability:

@NORMAL(rows in extent;average rows in cell;stddev of rows in cell;0)

Stop the calculation for any entry that has a “rows in extent” greater than the
average number of rows in a cell.
182 Database Partitioning, Table Partitioning, and MDC for DB2 9

We developed a spreadsheet to perform these calculations. Lotus 1-2-3 and
Microsoft Excel® versions of the spreadsheet are available for downloading from
the IBM Redbooks publications Web site. See Appendix B, “Additional material”
on page 243 for details about the download of additional material.

In our example, we use an average row size of 139 and an estimated rows in a
cell of 686. Consequently, we stop considering extent sizes larger than 24 pages
for the 4096 page size. The last column is computed by assuming a normal
distribution of cell sizes with the average of 139 and standard deviation of 131.

Table 5-1 Computing rows in a page and extent

Select a page size and extent size combination
The ideal page size and extent size combination has one extent in a cell with a
near-zero probability of cells smaller than one extent. However, the ideal
situation rarely exists. The trade-off is between excess I/O and excess space.

After you construct a table similar to Table 5-1, examine it to see which page and
extent combinations seem most reasonable. Our selections are a 4K page size
with an extent size of either eight, or twelve pages, or an 8K page size with an

Page size
(in bytes)

Rows in a
page

Extent size
(in pages)

Rows in
extent

Extents
needed
for a cell

Probability
of a cell
smaller than
one extent

4096 27 4 108 6.35 <0.005%

8 216 3.18 0.02%

12 324 2.12 0.29%

16 432 1.59 2.63%

20 540 1.27 13.25%

24 648 1.06 38.59%

28 756 0.91 70.35%

8192 54 4 216 3.18 0.02%

8 432 1.59 2.63%

12 648 1.06 38.59%

16384 109 4 436 1.57 2.82%

8 872 0.79 92.22%

32768 219 4 876 0.78 92.65%
 Chapter 5. Multi-dimensional clustering 183

extent size of four pages. These selections offer a fairly small amount of I/O to
read a cell combined with a very small probability of encountering cells
occupying less than one extent.

If you are converting an existing table, compare your selections to the table’s
actual values. If they do not match, consider creating a table space with
appropriate values and moving the table when you convert it. In this example, an
existing table space with 4K page size and four pages in an extent is probably
left unchanged.

Estimate average blocks for a cell
After you decide on a page size and extent size from the table, estimate the
average blocks for a cell. The average number of blocks in a cell is equal to the
total number of rows divided by the number of cells. Because we cannot have a
partial row in a block, round the average number of blocks in a cell up to an
integer value (3.49 becomes 4).

Estimate total data space required
The estimated total data space required, in blocks, is equal to number of blocks
in a cell multiplied by the estimated number of cells. Convert this to pages by
multiplying by the extent size.

For an existing table, compare this to the existing NPAGES from a REORGCHK
to determine how much larger the converted table will be.

5.1.5 Adjust design as needed

If you discover that the dimensions you select leave too much wasted space in a
block, you have several alternatives that might improve the average rows in a
cell. The goal is to increase the average rows per cell and reduce wasted space:

� Eliminate the highest cardinality dimension column.

This eliminates the column with the greatest impact on the number of cells.

� Replace a dimension column with a less granular column.

For example, replace a column containing city names with a column
containing state names (in the United States). Or, add a computed column to
the table that replaces a date column with an integer column containing year
and month. Example 5-6 on page 186 shows such a column.

� Reduce the block size.

This does not reduce the number of active pages in the cell, but does waste
fewer pages. It also increases the I/O activity required to read the entire cell,
because the number of blocks increases.
184 Database Partitioning, Table Partitioning, and MDC for DB2 9

If you are working with an existing table, this is a drastic step, because it
requires dropping and recreating the table space.

� Reduce the page size.

The only effect of reducing page size is to reduce the size of the wasted
space in each cell, but it means more pages (and possibly more blocks) are
required to store the data, increasing the I/O activity required to read the
entire cell.

If you are working with an existing table, this is a drastic step, because it
requires dropping and recreating the table space.

� Reconsider the entire list of columns.

If at first you do not succeed, try again.

5.1.6 DB2 Design Advisor

DB2 Design Advisor can recommend multi-dimensional clustering for an existing
table. When using the command, it considers MDC tables and clustering indexes
if the -m C option is specified. However, the DB2 Design Advisor does not
consider MDC for empty tables. The table needs to have a sample load of data,
comprising at least twelve extents.

DB2 Design Advisor does not determine average rows per cell or determine what
the space utilization is. You need to continue to perform those calculations if you
use the DB2 Design Advisor to recommend dimension keys.

5.2 Implementing MDC on a table

After you decide the dimensions, page size, extent size, and the space required,
it is very easy to implement MDC on the table. First, create a table space with the
required page size, extent size, and space.

To create an MDC table, use the ORGANIZE BY DIMENSIONS clause (the word
DIMENSIONS is optional) of the CREATE TABLE statement to specify the
columns of each dimension. Example 5-5 on page 186 shows the DDL for a
regular (non-MDC) table.
 Chapter 5. Multi-dimensional clustering 185

Example 5-5 Regular table

CREATE TABLE mdc_samp (
sales_amount DECIMAL(10,2) NOT NULL,
date_of_sale DATE NOT NULL,
salesperson CHAR(10) NOT NULL,
store_nbr INTEGER,
year_and_month GENERATED AS (INTEGER(date_of_sale)/100))

Example 5-6 shows the DDL for the same table, as an MDC table with two
dimensions. This command creates the table MDC_SAMP, two dimension block
indexes (one index for STORE_NBR and one index for the computed column
YEAR_AND_MONTH), and a consolidated block index containing all the dimension
columns (STORE_NBR and YEAR_AND_MONTH).

Example 5-6 Creating a simple MDC table

CREATE TABLE mdc_samp (
sales_amount DECIMAL(10,2) NOT NULL,
date_of_sale DATE NOT NULL,
salesperson CHAR(10) NOT NULL,
store_nbr INTEGER,
year_and_month GENERATED AS (INTEGER(date_of_sale)/100))
ORGANIZE BY DIMENSIONS (store_nbr, year_and_month)

To combine two or more columns into one dimension, enclose the columns for
the dimension in parentheses, as shown in Example 5-7. Here, the two columns
STORE_NBR and SALESPERSON are combined in a single dimension, with a second
dimension on YEAR_AND_MONTH.

Example 5-7 Creating an MDC table with multi-column dimensions

CREATE TABLE mdc_samp (
sales_amount DECIMAL(10,2) NOT NULL,
date_of_sale DATE NOT NULL,
salesperson CHAR(10) NOT NULL,
store_nbr INTEGER,
year_and_month GENERATED AS (INTEGER(date_of_sale)/100))

ORGANIZE BY ((store_nbr,salesperson), year_and_month)

To change an existing table to use MDC, you must recreate the table with the
ORGANIZE BY DIMENSIONS clause added to the CREATE TABLE statement.
This might involve unloading data, dropping views, dropping the table, creating
the table, reloading the data, recreating the views, and granting authorizations. A
186 Database Partitioning, Table Partitioning, and MDC for DB2 9

more automated approach is to use the SYSPROC.ALTOBJ stored procedure,
as shown in Example 5-8.

Example 5-8 Using SYSPROC.ALTOBJ to change the table to use MDC

CALL SYSPROC.ALTOBJ('APPLY_CONTINUE_ON_ERROR','
CREATE TABLE mdc_samp (

sales_amount DECIMAL(10,2) NOT NULL,
date_of_sale DATE NOT NULL,
salesperson CHAR(10) NOT NULL,
store_nbr INTEGER,
year_and_month GENERATED AS (INTEGER(date_of_sale)/100))
ORGANIZE BY DIMENSIONS (store_nbr, year_and_month)

',-1,?)

SYSPROC.ALTOBJ captures the definition of all dependent objects, drops them,
renames the table, creates the new table, loads the new table from the renamed
old table, creates the dependent objects, and issues any necessary grants.
Figure 5-1 shows the sample output from the procedure.

Figure 5-1 Output from SYSPROC.ALTOBJ

After the table has been altered, execute SYSPROC.ALTOBJ one more time to
clean up the renamed old table. Using the ALTER_ID parameter value from the
output of the previous step (In our example, 5), execute the SYSPROC.ALTOBJ
call as shown in Example 5-9.

Example 5-9 Sample cleanup SYSPROC.ALTOBJ SQL

CALL SYSPROC.ALTOBJ('FINISH',",5,?)

After completion of these steps, be sure to execute RUNSTATS on the
restructured table.
 Chapter 5. Multi-dimensional clustering 187

5.3 Administering and monitoring MDC tables

This section describes the special considerations that MDC tables add to the
administration and monitoring of the database.

5.3.1 Utilities

Although most utilities are unaffected by MDC tables, there are certain
considerations and specific output changes.

LOAD
The SAVECOUNT option and TOTALFREESPACE file-type modifier are not
supported with MDC tables. The ANYORDER option is required but, if not
specified, is set on automatically.

To improve performance, consider increasing the database configuration
parameter UTIL_HEAP_SIZE (utility heap size) in the database configuration. In
addition, set database configuration parameters SORTHEAP and
SHEAPTHRES_SHR to high values, because the load always includes a build
phase to create the required dimension indexes.

You need to sort the data by the dimension columns before loading. Because of
the need to build blocks and block indexes, the load is very sensitive to whether
the data is grouped by the dimension columns. In one test, we discovered that
the rows per second achieved with sorted data was about seven times greater
than with unsorted data.

IMPORT
You cannot use the CREATE or REPLACE_CREATE options to load an MDC
table.

Important: ALTOBJ is very sensitive about the table name. It must be
uppercase, preceded by a space, and followed by a space, as shown in
Example 5-8.

For further information on ALTOBJ, refer to the ALTOBJ article in the DB2 9
Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2
.udb.admin.doc/doc/r0011934.htm
188 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0011934.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/r0011934.htm

REORG
You cannot use the ALLOW WRITE ACCESS option on the reorganization of an
MDC table, unless you also specify the CLEANUP ONLY option.

Reorganization of MDC tables needs to be a very rare event, unless there is
significant delete activity resulting in sparsely occupied blocks. Unlike a table
with a clustered index, there is no degradation in the data clustering, because
every row is always stored in a block with rows that have the same dimension
column values.

RUNSTATS and REORGCHK
Although there are no changes in the RUNSTATS and REORGCHK commands,
there are new statistics columns gathered for MDC tables and several changes
in the computation of the ratios reported on REORGCHK. Figure 5-2 on
page 190 shows the output from REORGCHK on an MDC table. Items of interest
include:

� ACTBLK is the number of active blocks (blocks with data).

� MDC tables are designated with an asterisk (*) after the name.

� Block indexes are designated with an asterisk (*) after the name.

� The formula for F3 uses empty blocks and blocks with data instead of empty
pages and pages with data.
 Chapter 5. Multi-dimensional clustering 189

Figure 5-2 REORGCHK output for an MDC table

5.3.2 Monitoring MDC tables

The primary item to monitor on MDC tables is the size of the table. Because each
unique combination of dimension column values is stored in separate blocks, the
table can grow extremely quickly if several unique combinations are inserted.
Unfortunately, the only way to reduce the space used in this case is to redesign
the dimensioning. If new combinations are inserted, expect that more rows with
the same values will be added at a later date, so that what is initially seen as
“wasted space” can be considered “free space.”

5.3.3 Explain

MDC tables and block indexes add new types of data access to queries.
Example 5-10 on page 191 shows the output from db2expln of a select against a
non-MDC table. Compare it with Example 5-11 on page 192, which shows the
output from db2expln of the same query against an MDC table.
190 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 5-10 Query against a non-MDC table

Statement:

 select *
 from tpcd.customer
 where c_mktsegment='FURNITURE'

Section Code Page = 819

Estimated Cost = 13928.163086
Estimated Cardinality = 60000.000000

Coordinator Subsection - Main Processing:
 Distribute Subsection #1
 | Directed to Single Node
 | | Node Number = 1
 Access Table Queue ID = q1 #Columns = 8
 Return Data to Application
 | #Columns = 8

Subsection #1:
 Access Table Name = TPCD.CUSTOMER ID = 3,4
 | #Columns = 8
 | Relation Scan
 | | Prefetch: Eligible
 | Lock Intents
 | | Table: Intent Share
 | | Row : Next Key Share
 | Sargable Predicate(s)
 | | #Predicates = 1
 | | Insert Into Asynchronous Table Queue ID = q1
 | | | Broadcast to Coordinator Node
 | | | Rows Can Overflow to Temporary Table
 Insert Into Asynchronous Table Queue Completion ID = q1

End of section
 Chapter 5. Multi-dimensional clustering 191

Example 5-11 Query against an MDC table

Statement:

 select *
 from mdc.customer
 where c_mktsegment='FURNITURE'

Section Code Page = 819

Estimated Cost = 3294.023438
Estimated Cardinality = 60000.000000

Coordinator Subsection - Main Processing:
 Distribute Subsection #1
 | Directed to Single Node
 | | Node Number = 1
 Access Table Queue ID = q1 #Columns = 8
 Return Data to Application
 | #Columns = 8

Subsection #1:
 Access Table Name = MDC.CUSTOMER ID = 3,5
 | Index Scan: Name = SYSIBM.SQL070405161312650 ID = 3
 | | Dimension Block Index
 | | Index Columns:
 | | | 1: C_MKTSEGMENT (Ascending)
 | #Columns = 8
 | Clustered by Dimension for Block Index Access
 | #Key Columns = 1
 | | Start Key: Inclusive Value
 | | | | 1: 'FURNITURE '
 | | Stop Key: Inclusive Value
 | | | | 1: 'FURNITURE '
 | Data Prefetch: None
 | Index Prefetch: None
 | Lock Intents
 | | Table: Intent Share
 | | Block: Intent Share
 | | Row : Next Key Share
 | Sargable Predicate(s)
 | | Insert Into Asynchronous Table Queue ID = q1
 | | | Broadcast to Coordinator Node
 | | | Rows Can Overflow to Temporary Table
 Insert Into Asynchronous Table Queue Completion ID = q1

End of section
192 Database Partitioning, Table Partitioning, and MDC for DB2 9

Descriptions of the items worth noting are:

� Estimated timerons

Remember, timerons are an artificial measure of execution cost used by the
optimizer to select between access paths. A timeron cannot be used to
compare results between systems. However, within the same system in the
same operational environment, a timeron can be a valid form of comparison
between queries.

� Block index selection

If an MDC index is selected for use, it is identified as shown.

� Index keys used

Index key fields of an MDC appear in the same manner as other indexes.

� Prefetch status

Prefetch status here is None, which means that the optimizer does not see an
advantage to prefetching several blocks of data at a time. In the non-MDC
table, prefetch was Eligible, because the server was planning to scan the
entire table. Because of the clustering caused by the blocks, there is no
guarantee that prefetching is useful. Every block contains rows to be selected
compared to a percentage of the extents in the non-MDC table.

� Locks

A new level of locking, block level, is introduced with MDC tables.

5.4 Application considerations for MDC tables

The use of MDC tables is generally transparent to the application program. There
is almost nothing that an application must do to specifically exploit them.

However, the application can make use of the way that MDC handles delete
processing under certain specific conditions. There is an Information Center
article that outlines these conditions at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.ud
b.admin.doc/doc/c0007338.htm

For the application programmer, the prime consideration is that the WHERE
clause on the DELETE either does not exist or references only MDC dimension
columns. In that case, the delete operation does not physically delete and log
each row in the cells involved, but only modifies a few bytes in each page. In
addition, only these small modifications are logged, along with any index
maintenance and block map modification. This results in a significant reduction in
 Chapter 5. Multi-dimensional clustering 193

http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/c0007338.htm

both processing time and log space requirements when the number of affected
rows is large.

Applications must not make massive updates to an MDC dimension column.
Updating an MDC dimension column causes the following actions to occur (at a
minimum):

� The row is deleted from its current page.

Because the row’s dimension columns no longer match the values for the cell
in which it resides, it must be moved to a different cell.

� The row is placed on another page.

In the worst case, this includes creating a new cell. In that case, the
dimension block indexes and consolidated block index are updated. At best,
this process is the same as a new row insertion into an existing cell with room
in a block.

� Any row-level indexes are updated to reflect the new position of the row.

The row’s row ID changes, because it now resides on a different page. All
row-level indexes for the table contain the old row ID of the row.

5.5 Examples of using MDC

This section offers examples of MDC tables. Any experiences in performance
improvement are particular to the example cited and are not predictive of what
improvements (if any) that you might experience in your particular environment.

5.5.1 Applying MDC to the TPC customer table

To show how the MDC calculations are applied and the results achieved in a test
environment, we converted the customer table defined in TPC-D to use MDC.
Any performance results noted in this section are from a specialized test
environment and are for illustrative purposes only. Your results will vary.

The customer table was originally defined with the DDL shown in Example 5-12
on page 195. The data (300,000 rows) was loaded after being sorted into
c_mktsegment, c_nationkey order.
194 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 5-12 DDL to create customer table

CREATE TABLE tpcd.customer (
 c_custkey INTEGER NOT NULL ,
 c_name VARCHAR(25) NOT NULL ,
 c_address VARCHAR(40) NOT NULL ,
 c_nationkey INTEGER NOT NULL ,
 c_phone CHAR(15) NOT NULL ,
 c_acctbal DECIMAL(15,2) NOT NULL ,
 c_mktsegment CHAR(10) NOT NULL ,
 c_comment VARCHAR(117) NOT NULL)
 IN tbsp1 ;

CREATE INDEX tpcd.ndxcust ON tpcd.customer(c_mktsegment,c_nationkey)
CLUSTER;
CREATE UNIQUE INDEX tpcd.pkcust ON tpcd.customer (c_custkey);
ALTER TABLE tpcd.customer ADD PRIMARY KEY(c_custkey);

TBSP1 is a single-partition table space with a page size of 4096 and extent size of
32 pages.

Using the techniques from section 5.1, “Planning for the use of MDC on a table”
on page 178, we select the dimension columns and estimate the space
requirements:

� Determine the dimension column.

The C_NATIONKEY and C_MKTSEGMENT columns were chosen as the
dimension columns. The choice was arbitrary, because this is an artificially
generated table with no application use. However, these were two columns
with very low cardinalities and an argument can be made that they are
frequently used in queries, particularly queries performing analysis by country
or market segment.

Example 5-13 shows the query to check the cardinality of a column:
C_MKTSEGMENT had a cardinality of 5, and C_NATIONKEY had a
cardinality of 25.

Example 5-13 Checking cardinality

SELECT COUNT(DISTINCT c_mktsegment) c_mktsegment,COUNT(DISTINCT
c_nationkey) c_nationkey FROM tpcd.customer

C_MKTSEGMENT C_NATIONKEY
------------ -----------
 5 25
1 record(s) selected.
 Chapter 5. Multi-dimensional clustering 195

� Estimate the space required:

– Calculate the average row size.

Example 5-14 illustrates how to calculate the average row size. For our
example table, it is 180 bytes.

Example 5-14 Calculating row size

SELECT SUM(AVGCOLLEN + (CASE NULLS WHEN 'Y' THEN 1 ELSE 0 END) +
(CASE TYPENAME WHEN 'VARCHAR' THEN 4 ELSE 0 END)) FROM
SYSCAT.COLUMNS WHERE TABSCHEMA='TPCD' AND TABNAME='CUSTOMER'
1

 180

1 record(s) selected

– The actual number of cells is 125. Rows per cell ranged between 2298 and
2518, with an average of 2400 and a standard deviation of 50.9.
Example 5-15 shows the SQL query to obtain this information.

Example 5-15 Calculating cells and rows per cell

SELECT COUNT(*) cells,AVG(RowsPerCell) AS RowsPerCell,
MIN(RowsPerCell) AS MinRowsPerCell, MAX(RowsPerCell) AS
maxRowsPerCell, STDDEV(RowsPerCell) AS sdRowsPerCell FROM (SELECT
c_nationkey,c_mktsegment,COUNT(*) RowsPerCell FROM tpcd.customer
GROUP BY c_nationkey,c_mktsegment) cell_table

CELLS ROWSPERCELL MINROWSPERCELL MAXROWSPERCELL SDROWSPERCELL
----------- ----------- -------------- -------------- --------------
 125 2400 2298 2518 +5.092645E+001

– The existing table had a page size of 4096 and an extent size of 32 pages.
Based on the average rows in a cell and the standard deviation, there is a
less than 0.005% probability of having a cell smaller than one extent using
these values for almost any page size and extent size selected.

– The page size used is 4096. With that average, the rows per page are
(4096 - 68)/(10 + 180) = 21.

– The extent size used is 32K. The maximum rows per block and extent are
21 x 32 = 672.

– The average number of blocks/cell are 2400/672 = 3.6 (therefore, using 4
blocks).

– Total estimated blocks required was 4 x 125 = 500.
196 Database Partitioning, Table Partitioning, and MDC for DB2 9

A new table, MDC.CUSTOMER, was created by using the DDL in Example 5-16
and the data copied from TPCD.CUSTOMER.

Example 5-16 Creating the customer table with MDC

CREATE TABLE mdc.customer (
 c_custkey INTEGER NOT NULL ,
 c_name VARCHAR(25) NOT NULL,
 c_address VARCHAR(40) NOT NULL,
 c_nationkey INTEGER NOT NULL,
 c_phone CHAR(15) NOT NULL,
 c_acctbal DECIMAL(15, 2) NOT NULL,
 c_mktsegment CHAR(10) NOT NULL ,
 c_comment VARCHAR(117) NOT NULL)
ORGANIZE BY (c_mktsegment, c_nationkey)
IN tbsp1 ;

CREATE UNIQUE INDEX mdc.pkcust ON mdc.customer (c_custkey);

ALTER TABLE mdc.customer ADD PRIMARY KEY(c_custkey);

After executing REORGCHK, we compared the space requirements of the two
tables, which are summarized in Table 5-2 on page 198, and the space
requirements of the indexes, which are summarized in Table 5-3 on page 198,
and noted:

� The number of pages with data (NPAGES) was slightly higher for the MDC
table.

The original table had 13609 full pages and one partial. The MDC table has a
partial page in the last block for each cell.

� The full number of pages (FPAGES) matched our estimated requirement.

The extra 32 pages is because the first block of an MDC table is reserved.

� The block indexes on the MDC table took significantly less space than the
cluster index on the original table.

The cluster index is a row-level index, so each entry contains the key and the
list of row IDs with that key. It is this volume of entries that drives the number
of leaf pages to 600-plus and the index levels to three. In contrast, each of the
block index entries contains the key and list of the blocks that contain rows for
that key value. This index is much smaller and only has two levels.
 Chapter 5. Multi-dimensional clustering 197

Table 5-2 Comparison of non-MDC and MDC customer tables

Table 5-3 Comparison of indexes for non-MDC and MDC customer tables

After creating the tables, the SQL shown in Example 5-17 on page 199 was
executed 50 times using db2batch to compare performance.

REORGCHK data TPCD.CUSTOMER MDC.CUSTOMER

CARD 300,000 300,000

NPAGES 13,610 13,667

FPAGES 13,611 16,032

ALTBLK N/A 500

TSIZE 53,400,000 53,400,000

REORGCHK data TPCD.CUSTOMER MDC.CUSTOMER

NDXCUST clustering
index

Composite block index

INDCARD 300,000 500

LEAF 679 2

LVLS 3 2

KEYS 125 125

C_NATIONKEY
dimension index

INDC ARD 500

LEAF 2

LVLS 2

KEYS 25

C_MKTSEGMENT
dimension index

INDCARD 500

LEAF 2

LVLS 2

KEYS 5
198 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 5-17 SQL for comparing non-MDC table to MDC table

--#BGBLK 50
SELECT * FROM tpcd.customer WHERE c_nationkey = 0;
SELECT * FROM tpcd.customer WHERE c_mktsegment = 'FURNITURE';
SELECT * FROM tpcd.customer
WHERE c_mktsegment = 'FURNITURE'
 AND c_nationkey = 0;
SELECT * FROM mdc.customer WHERE c_nationkey = 0;
SELECT * FROM mdc.customer WHERE c_mktsegment = 'FURNITURE';
SELECT * FROM mdc.customer
WHERE c_mktsegment = 'FURNITURE'
 AND c_nationkey = 0;
--#EOBLK

Again, we remind you that this database was in a lab environment. Do not use
the results that we received to predict the performance in your environment. We
also ran explains on the SQL. Timings and information gleaned from the explains
are shown in Table 5-4 on page 200.

Note that the non-MDC table is in pristine condition where the clustering index is
concerned. The data was loaded in cluster sequence and no updates had taken
place. As the table is updated, the effectiveness of the clustering decreases until
the table is reorganized. In the MDC table, the data is kept clustered, because
each cell only contains one combination of clustering column values. So,
reorganizing the table to re-cluster the data is unnecessary.
 Chapter 5. Multi-dimensional clustering 199

Table 5-4 Comparison of queries

Where clause of
query (select *
from customer
where ...)

Statistic Non-MDC MDC

where
c_nationkey = 0

Average time
(proportional to
non-MDC average)

1.00 0.48

Minimum time
(proportional to
non-MDC average)

0.42 0.45

Maximum time
(proportional to
non-MDC average)

1.87 0.53

Basic access plan Relational scan of
table

Uses dimension
block index for
c_nationkey

where
c_mktsegment =
'FURNITURE'

Average time
(proportional to
non-MDC average)

1.00 0.51

Minimum time
(proportional to
non-MDC average)

0.79 0.48

Maximum time
(proportional to
non-MDC average)

2.27 0.58

Basic access plan Uses clustering
index

Uses dimension
block index for
c_mktsegment
200 Database Partitioning, Table Partitioning, and MDC for DB2 9

5.5.2 Utilizing both dimension and row-level indexes

Another table in the TPC database, LINEITEM, provides an opportunity to
examine how to use dimension and row-level indexes together to achieve better
query performance. Example 5-18 shows the original LINEITEM table definition.

Example 5-18 Original LINEITEM table

CREATE TABLE tpcd.lineitem (l_orderkey INTEGER NOT NULL,
 l_partkey INTEGER NOT NULL,
 l_suppkey INTEGER NOT NULL,
 l_linenumber INTEGER NOT NULL,
 l_quantity DECIMAL(15,2) NOT NULL,
 l_extendedprice DECIMAL(15,2) NOT NULL,
 l_discount DECIMAL(15,2) NOT NULL,
 l_tax DECIMAL(15,2) NOT NULL,
 l_returnflag CHAR(1) NOT NULL,
 l_linestatus CHAR(1) NOT NULL,
 l_shipdate DATE NOT NULL,
 l_commitdate DATE NOT NULL,
 l_receiptdate DATE NOT NULL,
 l_shipinstruct CHAR(25) NOT NULL,
 l_shipmode CHAR(10) NOT NULL,
 l_comment VARCHAR(44) NOT NULL)

 IN TBSP1;

where
c_mktsegment =
'FURNITURE' and
c_nationkey = 0

Average time
(proportional to
non-MDC average)

1.00 0.23

Minimum time
(proportional to
non-MDC average)

0.97 0.21

Maximum time
(proportional to
non-MDC average)

3.83 0.26

Basic access plan Uses clustering
index

Uses consolidated
block index

Where clause of
query (select *
from customer
where ...)

Statistic Non-MDC MDC
 Chapter 5. Multi-dimensional clustering 201

DB2 Design Advisor was executed against the table using the workload, which is
shown in Example 5-19, and the following command:

db2advis -d doug -i tpcd.workload.advis.sql -m C -o tpcd.advis.results

The resulting output is shown in Example 5-20.

Example 5-19 Workload for DB2 Design Advisor

SELECT * FROM tpcd.lineitem
WHERE l_shipmode IN ('AIR','RAIL','FOB')
AND l_shipdate = '1997-01-01'
AND l_partkey BETWEEN 2000 AND 5000;

SELECT * FROM tpcd.lineitem
WHERE l_shipdate BETWEEN '1997-01-01' AND '1997-06-01';

SELECT * FROM tpcd.lineitem
WHERE l_shipmode IN ('AIR','REG AIR');

SELECT * FROM tpcd.lineitem
WHERE l_shipdate = '1997-01-01'
AND l_partkey BETWEEN 2000 AND 5000;

SELECT * FROM tpcd.lineitem
WHERE l_shipdate BETWEEN '1997-01-01' AND '1997-12-31'
AND l_shipmode='RAIL'
AND l_partkey BETWEEN 2000 AND 5000;

Example 5-20 DB2 Design Advisor output

found [5] SQL statements from the input file
Recommending Multi-Dimensional Clusterings...
total disk space needed for initial set [0.122] MB
total disk space constrained to [3052.923] MB

Note: MDC selection in the DB2 Design Advisor requires the target
database to be populated with a data sample. This sample is used for
estimating the number and density of MDC cells in any MDC solution that
the DB2 Design Advisor will recommend. If your database is empty, the
DB2 Design Advisor will not recommend MDC.

Prioritizing Multi-dimensional Clustering candidate tables...
Multi-dimensional Clustering candidate tables, in priority sequence:
202 Database Partitioning, Table Partitioning, and MDC for DB2 9

Table 0: LINEITEM,
 number of pages 415425,
 block size 32
There are 1 candidate tables considered for Multi-dimensional
Clustering conversion

Searching the multi-dimensional space for solutions for LINEITEM...

Percentage of search points visited...
100

2 clustering dimensions in current solution
[620904.0000] timerons (without any recommendations)
[194247.0744] timerons (with current solution)
[68.72%] improvement

--
--
-- LIST OF MODIFIED CREATE-TABLE STATEMENTS WITH RECOMMENDED
PARTITIONING KEYS AND TABLESPACES AND/OR RECOMMENDED MULTI-DIMENSIONAL
CLUSTERINGS
-- ===========================
-- CREATE TABLE "TPCD "."LINEITEM" ("L_ORDERKEY" INTEGER NOT NULL ,
-- "L_PARTKEY" INTEGER NOT NULL ,
-- "L_SUPPKEY" INTEGER NOT NULL ,
-- "L_LINENUMBER" INTEGER NOT NULL ,
-- "L_QUANTITY" DECIMAL(15,2) NOT NULL ,
-- "L_EXTENDEDPRICE" DECIMAL(15,2) NOT NULL ,
-- "L_DISCOUNT" DECIMAL(15,2) NOT NULL ,
-- "L_TAX" DECIMAL(15,2) NOT NULL ,
-- "L_RETURNFLAG" CHAR(1) NOT NULL ,
-- "L_LINESTATUS" CHAR(1) NOT NULL ,
-- "L_SHIPDATE" DATE NOT NULL ,
-- "L_COMMITDATE" DATE NOT NULL ,
-- "L_RECEIPTDATE" DATE NOT NULL ,
-- "L_SHIPINSTRUCT" CHAR(25) NOT NULL ,
-- "L_SHIPMODE" CHAR(10) NOT NULL ,
-- "L_COMMENT" VARCHAR(44) NOT NULL ,
-- MDC704121438030000 GENERATED ALWAYS AS (
((INT(L_SHIPDATE))/16)))
-- ORGANIZE BY (
-- MDC704121438030000,
-- L_SHIPMODE)
-- ;
-- COMMIT WORK ;
 Chapter 5. Multi-dimensional clustering 203

158 solutions were evaluated by the advisor
DB2 Workload Performance Advisor tool is finished.

Three modifications were made to the advisor output:

� L_DAYS_IN_TRANSIT was added to the table as a generated column and
defined as a dimension column.

This column was added to provide an example of a non-monotonic function
and to create a third dimension column so that the consolidated block index
was not used when the WHERE clause mentioned only some of the
dimensions. This was for testing purposes only to show how DB2 utilizes
index ANDing for block and row-level indexes.

� A meaningful name (L_SHIP_YYMM) was substituted for the generated column
name.

� L_SHIP_YYMM used a different divisor from that suggested by the DB2 Design
Advisor to provide an integer that contains the year and the month of the ship
date.

The net effect of this divisor change is to increase the number of rows in a
cell.

Example 5-21 is the modified table.

Example 5-21 DDL for LINEITEM table with MDC and regular index

CREATE TABLE "MDC "."LINEITEM" (
 "L_ORDERKEY" INTEGER NOT NULL ,
 "L_PARTKEY" INTEGER NOT NULL ,
 "L_SUPPKEY" INTEGER NOT NULL ,
 "L_LINENUMBER" INTEGER NOT NULL ,
 "L_QUANTITY" DECIMAL(15,2) NOT NULL ,
 "L_EXTENDEDPRICE" DECIMAL(15,2) NOT NULL ,
 "L_DISCOUNT" DECIMAL(15,2) NOT NULL ,
 "L_TAX" DECIMAL(15,2) NOT NULL ,
 "L_RETURNFLAG" CHAR(1) NOT NULL ,
 "L_LINESTATUS" CHAR(1) NOT NULL ,
 "L_SHIPDATE" DATE NOT NULL ,
 "L_COMMITDATE" DATE NOT NULL ,
 "L_RECEIPTDATE" DATE NOT NULL ,
 "L_SHIPINSTRUCT" CHAR(25) NOT NULL ,
 "L_SHIPMODE" CHAR(10) NOT NULL ,
 "L_COMMENT" VARCHAR(44) NOT NULL,
 l_days_in_transit GENERATED AS (DAYS(l_receiptdate) -
 DAYS(l_shipdate)),
 l_ship_YYMM GENERATED AS (INTEGER(l_shipdate)/100))
204 Database Partitioning, Table Partitioning, and MDC for DB2 9

 ORGANIZE BY (l_shipmode, l_ship_yymm, l_days_in_transit)
IN "TBSP1" ;

CREATE INDEX mdc.ndx_l_partnbr ON mdc.lineitem (l_partkey)
 ALLOW REVERSE SCANS;

As we noted previously, this table includes both a monotonic and a
non-monotonic function. Monotonic functions increase as the variables in the
function increase. The function for L_DAYS_IN_TRANSIT is non-monotonic,
because increasing one or both dates does not necessarily mean that the
function value increases. For example, if the dates were 2001-01-31 for
L_SHIPDATE and 2001-02-05 for L_RECEIPTDATE, the function computes a value of
5. Increase L_SHIPDATE to 2001-02-01, and the function computes a value of 4.
The function for L_SHIP_YYMM is monotonic, which is readily apparent by noting
that division or multiplication by a positive constant always yields a value that
increases as the original number increases.

When a column defined as a monotonic function on a base column is used as a
dimension, DB2 can use predicates on the base column to compute predicates
on the dimension column. For example, a predicate of L_SHIPDATE BETWEEN
'2001-02-05' AND '2001-03-02' can be translated by the database server into a
range predicate of L_SHIP_YYMM BETWEEN 200102 AND 200103.

Some sample queries and explanations of their access paths:

� SELECT * FROM mdc.lineitem WHERE l_shipmode IN ('AIR', 'RAIL', 'FOB')
AND l_days_in_transit IN(5,6,7,8,9,10) AND l_partkey BETWEEN 2000
AND 5000;

Use the block index for L_SHIPMODE and the block index for
L_DAYS_IN_TRANSIT to get two lists of block IDs. AND those two lists to select
block IDs that are in both lists. Match that list to the list of row IDs found from
the PARTKEY index. Use the resultant list of row IDs to fetch data rows.

� SELECT * FROM mdc.lineitem WHERE l_shipdate BETWEEN '1997-01-01' AND
'1997-06-01' AND l_partkey BETWEEN 2000 AND 5000;

Use the block index for L_SHIP_YYMM limited by keys between 199701 and
199706 to get the block IDs. Match the block IDs with the row IDs from the
PARTKEY index limited by keys between 2000 and 5000.

� SELECT * FROM mdc.lineitem WHERE YEAR(l_shipdate) = 1997 AND
l_partkey BETWEEN 2000 AND 5000;

Use the PARTKEY index limited by a key between 2000 and 5000. L_SHIPDATE
values are resolved as SARGable predicates (tested after the row is read).
This query did not use the dimension index.
 Chapter 5. Multi-dimensional clustering 205

� SELECT * FROM mdc.lineitem WHERE l_shipdate BETWEEN '1997-01-01' AND
'1997-12-31' AND l_partkey BETWEEN 2000 AND 5000;

Use the dimension index on L_SHIP_YYMM limited by a key between 199701
and 199712, matching the block IDs to the row IDs from the PARTKEY index
limited by a key between 2000 and 5000.

� SELECT * FROM mdc.lineitem WHERE l_shipdate = '1997-01-01' AND
l_partkey BETWEEN 2000 AND 5000;

Use the dimension index on L_SHIP_YYMM limited by key = 199701, matching
block IDs to row IDs from the PARTKEY index limited by a key between 2000
and 5000.

5.5.3 Using the Control Center to run DB2 Design Advisor

You can invoke DB2 Design Advisor through the Control Center. This section
shows the major steps in that process. It assumes that you have cataloged the
database on your client machine. The steps are:

1. Open the list of databases in the Control Center.

2. Select your database and then select the Design Advisor (Selected →
Design Advisor). See Figure 5-3 on page 207.
206 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 5-3 Selecting Design Advisor

3. Click Next on the introduction page.

4. Select the desired performance features to consider. In our case, only MDC is
selected. Click Next.

5. The workload panel that is displayed depends on whether a workload has
previously been defined for the table. In our case, there is no previous
workload, so we are presented with a panel to enter a workload name. See
Figure 5-4 on page 208. The workload name is not significant to the process;
it is used to recall the workload later. You can either import a workload from
another source or add the individual SQL statements for the workload to be
analyzed. We have our workload in a text file, so we click Import.
 Chapter 5. Multi-dimensional clustering 207

Figure 5-4 Workload definition page

6. You can import SQL from various sources, including a workload file, recently
explained statements (in the EXPLAIN tables of the database), or recently
executed SQL (from a dynamic SQL snapshot). In our example, we chose
Workload file, entered our file name, and clicked Load file. See Figure 5-5
on page 209.
208 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 5-5 Selecting the workload file

7. The statements in the workload file are displayed. We selected all the
statements and clicked OK.

8. Back on the workload panel, we clicked Next, because we did not want to
change any of the statements or their relative execution frequency.

9. We do not need to calculate statistics on the tables in the workflow, because
all of our statistics are current. Click Next to proceed.

10.Choose any options needed on the Options panel of the Design Advisor. We
do not want to limit the disk space utilized for MDC, so do not select any
options and just click Next.

11. On the Calculation panel, select Now for when to execute analysis and click
Next.

12.On the recommendations panel (Figure 5-6 on page 210), a list of the tables
to alter is displayed. Click on the selection box to select which table changes
are accepted and click Show DDL to see the DDL generated by the Design
Advisor. You can also click Show workload detail to see the estimated
savings (in timerons) for each statement in the workload. Click Next to
proceed to the next step.
 Chapter 5. Multi-dimensional clustering 209

Figure 5-6 Design Advisor recommendations

13.The Unused Objects panel shows the list of database objects (usually
indexes) that were not referenced in the workload. If there are items listed
that can be removed, you might mark them here by clicking the box in the
Accept column for the object. Be certain that other SQL statements are not
impacted by the removal. Click Next to continue.

14.The Schedule panel (Figure 5-7 on page 211) is where you can choose to
save the DDL necessary to convert the table, and either execute the DDL
immediately or schedule it for later execution. Click Cancel if you do not want
to execute the DDL. Otherwise, make a scheduling selection and click Next
for a final summary panel or Finish to exit the Design Advisor and proceed to
executing the DDL as scheduled.
210 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 5-7 Executing the MDC conversion

5.5.4 Using MDC to provide roll-out functionality

A data warehouse contains an achievement table as originally defined in
Example 5-22 on page 212. This table in production contains several years of
data with approximately 1,500,000,000 rows per year. There is a requirement to
roll-out the oldest year when the maximum number of years planned for the table
has been reached. In other words, if we are storing three years in the table, we
delete the oldest year after adding the fourth year.

As the table was defined, the simple DELETE FROM AG.CMWT_O_ACHIEVEMENT WHERE
ACCT_YR = '2005' either failed due to “transaction log full” errors or ran for a
significant amount of time that was considered excessive for the available update
window in the warehouse processing cycle. Various other programmatic
solutions were tried, but most had the same problems of taking too much time to
perform the total delete or exhausting the available transaction logs.
 Chapter 5. Multi-dimensional clustering 211

Example 5-22 DDL for achievement table in warehouse

CREATE TABLE ag.cmwt_o_achievement (
 ee_ie_apsk DECIMAL (15,0) NOT NULL ,
 meas_detail_apsk CHAR (8) FOR BIT DATA NOT NULL ,
 meas_detail_ver SMALLINT NOT NULL ,
 meas_apsk CHAR (8) FOR BIT DATA NOT NULL ,
 meas_ver SMALLINT NOT NULL ,
 ach_posting_mth CHAR (2) NOT NULL ,
 ach_posting_seq_no SMALLINT NOT NULL ,
 acct_yr CHAR (4) NOT NULL ,
 ach_eff_mth CHAR (2) NOT NULL ,
 sys_id CHAR (4) NOT NULL ,
 orig_achvt_amt DECIMAL (15,2) NOT NULL ,
 recg_achvt_amt DECIMAL (15,2) NOT NULL ,
 int_tset_id INTEGER NOT NULL WITH DEFAULT 0,
 int_tsset_id INTEGER NOT NULL WITH DEFAULT 0,
 batch_nbr CHAR (3) NOT NULL ,
 key_set_nbr SMALLINT NOT NULL ,
 frozen_indc CHAR (1) NOT NULL WITH DEFAULT 'N',
 PRIMARY KEY (
 meas_apsk,
 meas_ver,
 ach_posting_mth,
 ach_posting_seq_no,
 acct_yr,
 ee_ie_apsk,
 meas_detail_apsk,
 meas_detail_ver)
)
 DISTRIBUTE BY HASH(meas_apsk)
 IN tsrp_ag_achieve LONG IN tslp_ag_lobsp

The best solution for this table is to use table partitioning to attach and detach a
year of data. However, if the warehouse processing requirements did not allow
for granting the necessary authorities for that process to the user executing the
update stream, MDC provides another alternative.

By using ACCT_YR as a dimension column, we can take advantage of the delete
processing for MDC tables. The potential wasted space, even if the last block in
a cell used only one page, is insignificant compared to the approximately
24,000,000 pages required to store the data for one year. The normal delete
processing deletes one row at a time and logs the deleted data. This requires
more than 90 gigabytes of log space. The MDC table delete, using the simple
delete statement, requires approximately 100 megabytes of log space for the few
212 Database Partitioning, Table Partitioning, and MDC for DB2 9

bytes on each page that were updated. In addition, because the delete performs
at the page level instead of the row level and updates only a few bytes per page,
the processing time is significantly reduced.

5.5.5 Using MDC on a fact table in a star schema warehouse

In the classic star-schema design, a central fact table is connected by keys to
several dimension tables. The dimension tables contain the attributes used in the
query’s WHERE clause and are joined to the fact table by the key fields to find
facts (or rows) with the desired attributes. For example, a fact table of
PRODUCT_SALES (with foreign key columns, such as CUSTOMER_KEY, PERIOD_KEY,
and PRODUCT_KEY, and fact columns, such as QUANTITY and VALUE) might be
associated with dimension tables of CUSTOMER (which contains customer
attributes, such as LOCATION, BUSINESS_TYPE, and SALES_VOLUME), TIME_PERIOD
(with columns, such as DATE, QUARTER, and MONTH) and PRODUCT (which contains
information, such as COST, PRODUCT_TYPE, and PACKAGE_SIZE). Each dimension
table has a primary key, and the fact table contains foreign keys for each of the
dimension tables. In our brief example, each fact table row contains the key
value of the customer to whom the sale was made and the key value of the
product sold. A sample query that shows total quantity and dollar value of sales
by quarter for 2005 for customers with sales volume between 40000 and 100000
might be similar to this:

SELECT quarter, SUM(quantity), SUM(value) FROM product_sales INNER
JOIN customer ON product_sales.customer_key=customer.customer_key
INNER JOIN time_period ON
product_sales.period_key=time_period.period_key WHERE
time_period.year=2005 AND customer.sales_volume BETWEEN 40000 AND
100000 GROUP BY quarter

Without multi-dimensional clustering, the usual implementation of the fact table
includes row-level indexes for CUSTOMER_KEY, PRODUCT_KEY, and PERIOD_KEY. DB2
typically uses the RID-level indexes and index ANDing to determine which rows
of the fact table have to be retrieved, after the list of key values that satisfied the
where conditions was determined by scanning the dimension tables.

With MDC, any (or all) of these key fields can be considered for dimensions. For
each dimension, the resulting block index is significantly smaller than the
corresponding RID-level index, by a factor approximately equal to the number of
rows in a block. In addition, the clustering of the data in the fact table means that
less I/O is usually required to read all the qualifying rows.

Of course, as with any MDC table, you must analyze the data to determine the
number of rows per cell to be sure that wasted space is at a minimum. In our
simple example, it is quite a stretch to assume that all three keys qualify as
 Chapter 5. Multi-dimensional clustering 213

dimensions, because that implies that for any one customer, period, and product,
there is enough data to fill a block. However, by adding a few computed columns
to the fact table that are computed by dividing the customer and product keys by
a certain value, we might be able to arrive at a dimension structure that does
have enough data to fill each block. These computed columns add length to each
row of the fact table, but the improved performance of the MDC dimensions and
the reduced size of the MDC block indexes compared to the row-level indexes
might offset that cost.

Based on this exercise, we strongly recommend that you use the DB2 Design
Advisor to help you determine a reasonable solution.
214 Database Partitioning, Table Partitioning, and MDC for DB2 9

Chapter 6. Using database partitioning,
table partitioning, and MDC
together

In this chapter, we discuss how you can use database partitioning (DPF), table
partitioning, and multi-dimensional clustering (MDC) together.

Except as noted in each section, there are no special requirements for
administration and management of an environment that uses two or three of
these partitioning technologies concurrently. You must comply with any
restrictions defined in previous chapters, because they apply to the individual
technologies.

6

© Copyright IBM Corp. 2007. All rights reserved. 215

6.1 Database partitioning and MDC

A table that spans multiple database partitions can also utilize multi-dimensional
clustering (MDC). Each database partition contains the dimension block indexes
and consolidated block index for the rows in that partition. Example 6-1 shows
the DDL to define an MDC table distributed over multiple database partitions.
Compare this to Example 5-21 on page 204.

Example 6-1 DDL for LINEITEM table with MDC and partitioning

CREATE TABLE mdc.lineitem
 (l_orderkey INTEGER NOT NULL ,
 l_partkey INTEGER NOT NULL ,
 l_suppkey INTEGER NOT NULL ,
 l_linenumber INTEGER NOT NULL ,
 l_quantity DECIMAL(15, 2) NOT NULL ,
 l_extendedprice DECIMAL (15, 2) NOT NULL ,
 l_discount DECIMAL(15, 2) NOT NULL ,
 l_tax DECIMAL(15, 2) NOT NULL ,
 l_returnflag CHAR(1) NOT NULL ,
 l_linestatus CHAR (1) NOT NULL ,
 l_shipdate DATE NOT NULL ,
 l_commitdate DATE NOT NULL ,
 l_receiptdate DATE NOT NULL ,
 l_shipinstruct CHAR(25) NOT NULL ,
 l_shipmode CHAR(10) NOT NULL ,
 l_comment VARCHAR(44) NOT NULL,
 l_days_in_transit GENERATED AS
 (DAYS(l_receiptdate) - DAYS(l_shipdate)),
 l_ship_yymm GENERATED AS (INTEGER(l_shipdate)/100))
ORGANIZE BY (l_shipmode,l_ship_yymm,l_days_in_transit)
DISTRIBUTE BY hash(l_partkey)
IN tbsp123 ;

CREATE index mdc.ndx_l_partnbr ON mdc.lineitem (l_partkey)
 ALLOW REVERSE SCANS;

In general, there is no conflict between DPF and MDC. The distribution key might
or might not be used as a dimension key. If it is used as a dimension key, there is
no impact on cell size in the partitions. If the distribution key is not a dimension
key, you must estimate the average blocks per cell by database partition.
Database partitioning might reduce what was a reasonable average cell size to a
value less than one block, which means wasted space. This does not mean that
216 Database Partitioning, Table Partitioning, and MDC for DB2 9

you must make the distribution key an MDC dimension. The keys serve different
purposes and have different standards for column selection. The columns must
be selected based on how well they fill those purposes. Choose the distribution
key to provide the maximum collocation with other tables in the database with
which the table is often joined. Choose the dimension keys for query
performance.

Estimate average blocks per cell by partition
For a new table or an existing table that is not distributed across multiple
database partitions, there is no practical way to estimate the distribution of the
rows and cells across database partitions. Assume the best case, which is that
the cells are equally dense (that is, have the same number of rows) across all
database partitions. Compute the average blocks per cell by partition by dividing
the average blocks per cell across the whole table by the number of database
partitions.

For an existing table that is distributed across multiple database partitions, use
SQL similar to Example 6-2 to compute the average rows for cells in each
database partition.

Example 6-2 Computing average rows for a cell across database partitions

SELECT partition,
 COUNT(*) cells,
 AVG(RowsPerCell) AS RowsPerCell,
 MIN(RowsPerCell) AS MinRowsPerCell,
 MAX(RowsPerCell) AS maxRowsPerCell,
 STDDEV(RowsPerCell) AS sdRowsPerCell
FROM (
 SELECT dbpartitionnum(col1) partition,
 col1,
 col2,
 ... ,
 colN,
 COUNT(*) RowsPerCell
 FROM table1
 GROUP BY dbpartitionnum(col1),
 col1,
 col2,
 ... ,
 colN
) cell_table
GROUP BY ROLLUP(partition)
ORDER BY 1
 Chapter 6. Using database partitioning, table partitioning, and MDC together 217

If the data is not evenly distributed, look for partitions that have an average rows
in a cell that is significantly lower than the overall average. This might indicate
more wasted space in that partition, which translates into more space required to
store the cells in the partition. Because the partitioned database allocates the
table space equally across partitions, this means that the amount of additional
space is multiplied by the number of partitions. For example, if a table requires
five extents in most partitions, but one of the partitions requires seven extents,
each partition has seven extents allocated for the table. This is a function of DPF.
MDC might simply exacerbate the condition.

Determining page size and extent size
Determining the page size and the extent size for an MDC table in a DPF
environment is essentially the same as for a non-partitioned environment. The
major difference is that the average rows in a cell must be computed at the
partition level. If the distribution key is a dimension key, the averages are the
same as for the non-partitioned table calculations (as calculated with the SQL in
Example 5-4 on page 182). Otherwise (and this is normally the case), the
averages are approximately equal to the non-partitioned average divided by the
number of partitions. This usually means that your best page size and best
extent size are smaller than the optimum values for the equivalent
non-partitioned table.

In our non-partitioned example (5.5.2, “Utilizing both dimension and row-level
indexes” on page 201), the LINEITEM table had an average rows in a cell of 686
with a standard deviation of 131 and an average row size of 139. When we
executed a query based on the SQL shown in Example 6-2 on page 217, we got
the results shown in Example 6-3.

Example 6-3 Average rows in cell for partitioned MDC LINEITEM table

PARTITION CELLS ROWSPERCELL MINROWS MAXROWS SD
--------- ------- ----------- ------- ------- ------------------------
1 17445 228 1 304 +4.46416060975245E+001
2 17440 229 1 311 +4.45760485138464E+001
3 17445 229 1 308 +4.45651991378273E+001
- 52330 229 1 311 +4.45962812765570E+001

We use the methodology that is described in “Determine candidate page size
and extent size combinations” on page 182 to choose the page size and extent
size. If we use 228 and 46 as the average and standard deviation (taking the
smallest average and the highest deviation give a worst case estimation of the
probability of a small cell), we get Table 6-1 on page 219. In this table, it is
obvious that the only good choice for page size and extent size is 4096 bytes for
the page and 4 pages in an extent.
218 Database Partitioning, Table Partitioning, and MDC for DB2 9

Table 6-1 Computing rows in a page and extent for database partition and MDC

6.2 Database partitioning and table partitioning

In this section, we discuss the combined use of DPF and table partitioning. The
benefits provided by table partitioning and DPF are distinct but complementary.
You can use both together to get all the benefits:

� Table partitioning provides:

– Scan parallelism (the same as ordinary tables)
– Partition elimination

� DB2 Enterprise Server Edition (ESE) with DPF provides:

– Query parallelism
– Divide and conquer for REORG and BACKUP

6.2.1 Logical representation

A diagram of the logical layout of a partitioned table in a partitioned database is
provided in Figure 6-1 on page 220. This describes a multi-partition database
that contains a database partition group that spans all or some of the database
partitions. The database partition group contains four table spaces (table spaces
1 through 4). The partitioned table spans those four table spaces.

The dotted line in Figure 6-1 on page 220 represents the logical boundary of the
partitioned table. In this case, it spans a minimum of five database partitions and
four table spaces. Implementing a data partitioned table with database
partitioning means that the table is distributed across the partitions defined in the
database partition group by using the hashing algorithm. Your use of the

Page size
(in bytes)

Rows in
a page

Extent size
(in pages)

Rows in
extent

Extents in a
cell

Probability of
a cell smaller
than one
extent

4096 27 4 108 2.11 0.45%

8 216 1.06 39.71%

12 324 0.70 98.16%

8192 54 4 216 1.06 39.71%

16384 109 4 436 0.52 100.00%

32768 219 4 876 0.26 100.00%
 Chapter 6. Using database partitioning, table partitioning, and MDC together 219

combination of database partitioning and table partitioning now means that you
can distribute data across multiple database partitions, multiple table spaces
(due to the table partitioning), and multiple containers. This provides significant
scalability for a single table. It can also significantly boost the query performance
by taking advantage of the massively parallel processing (MPP) plus symmetric
multiprocessing (SMP) with table partition elimination.

Figure 6-1 Partitioned table in a partitioned database

6.2.2 Implementing a table using table partitioning and database
partitioning

The statements that we used to create a partitioned table in a DPF environment
are shown in Example 6-4 on page 221. This was based on a previously created
DPF environment containing eight partitions.

Cluster
Database partition group 01

DB Partition 1 DB Partition 2 DB Partition 3 DB Partition 4 DB Partition 5

C2 C3 C4 C5

Table space 1

C1 C2 C3 C4 C5

C1

C2C1

C2 C3 C4 C5

C3 C4 C5

C1

Table space 2

Table space 3

Table space 4

more
partitions
220 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example 6-4 Implementation of database partitioning and table partitioning

CREATE DATABASE PARTITION GROUP dbpg2007 ON DBPARTITIONNUMS (0 to 7);

CREATE BUFFERPOOL dbpg2007bp1 IMMEDIATE DATABASE PARTITION GROUP dbpg2007 SIZE
1000 AUTOMATIC
PAGESIZE 4 K ;

CREATE TABLESPACE inv_tbsp2007_00 IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/db2inst4/db00/inv_tbsp2007_00.dbf' 12800) ON
DBPARTITIONNUMS (0)
USING (FILE '/db2/db2inst4/db01/inv_tbsp2007_00.dbf' 12800) ON
DBPARTITIONNUMS (1)
USING (FILE '/db2/db2inst4/db02/inv_tbsp2007_00.dbf' 12800) ON
DBPARTITIONNUMS (2)
USING (FILE '/db2/db2inst4/db03/inv_tbsp2007_00.dbf' 12800) ON
DBPARTITIONNUMS (3)
USING (FILE '/db2/db2inst4/db04/inv_tbsp2007_00.dbf' 12800) ON
DBPARTITIONNUMS (4)
USING (FILE '/db2/db2inst4/db05/inv_tbsp2007_00.dbf' 12800) ON
DBPARTITIONNUMS (5)
USING (FILE '/db2/db2inst4/db06/inv_tbsp2007_00.dbf' 12800) ON
DBPARTITIONNUMS (6)
USING (FILE '/db2/db2inst4db2inst4/db07/inv_tbsp2007_00.dbf' 12800) ON
DBPARTITIONNUMS (7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;

CREATE TABLESPACE inv_tbsp2007_01 IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/db2inst4/db00/inv_tbsp2007_01.dbf' 12800) ON
DBPARTITIONNUMS (0)
USING (FILE '/db2/db2inst4/db01/inv_tbsp2007_01.dbf' 12800) ON
DBPARTITIONNUMS (1)
USING (FILE '/db2/db2inst4/db02/inv_tbsp2007_01.dbf' 12800) ON
DBPARTITIONNUMS (2)
USING (FILE '/db2/db2inst4/db03/inv_tbsp2007_01.dbf' 12800) ON
DBPARTITIONNUMS (3)
USING (FILE '/db2/db2inst4/db04/inv_tbsp2007_01.dbf' 12800) ON
DBPARTITIONNUMS (4)
USING (FILE '/db2/db2inst4/db05/inv_tbsp2007_01.dbf' 12800) ON
DBPARTITIONNUMS (5)
USING (FILE '/db2/db2inst4/db06/inv_tbsp2007_01.dbf' 12800) ON
DBPARTITIONNUMS (6)
USING (FILE '/db2/db2inst4/db07/inv_tbsp2007_01.dbf' 12800) ON
DBPARTITIONNUMS (7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;
 Chapter 6. Using database partitioning, table partitioning, and MDC together 221

CREATE TABLESPACE inv_tbsp2007_02 IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/db2inst4/db00/inv_tbsp2007_02.dbf' 12800) ON
DBPARTITIONNUMS (0)
USING (FILE '/db2/db2inst4/db01/inv_tbsp2007_02.dbf' 12800) ON
DBPARTITIONNUMS (1)
USING (FILE '/db2/db2inst4/db02/inv_tbsp2007_02.dbf' 12800) ON
DBPARTITIONNUMS (2)
USING (FILE '/db2/db2inst4/db03/inv_tbsp2007_02.dbf' 12800) ON
DBPARTITIONNUMS (3)
USING (FILE '/db2/db2inst4/db04/inv_tbsp2007_02.dbf' 12800) ON
DBPARTITIONNUMS (4)
USING (FILE '/db2/db2inst4/db05/inv_tbsp2007_02.dbf' 12800) ON
DBPARTITIONNUMS (5)
USING (FILE '/db2/db2inst4/db06/inv_tbsp2007_02.dbf' 12800) ON
DBPARTITIONNUMS (6)
USING (FILE '/db2/db2inst4/db07/inv_tbsp2007_02.dbf' 12800) ON
DBPARTITIONNUMS (7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;

CREATE TABLESPACE inv_tbsp2007_03 IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/db2inst4/db00/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (0)
USING (FILE '/db2/db2inst4/db01/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (1)
USING (FILE '/db2/db2inst4/db02/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (2)
USING (FILE '/db2/db2inst4/db03/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (3)
USING (FILE '/db2/db2inst4/db04/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (4)
USING (FILE '/db2/db2inst4/db05/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (5)
USING (FILE '/db2/db2inst4/db06/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (6)
USING (FILE '/db2/db2inst4/db07/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;

CREATE TABLESPACE inv_tbsp2007_ix IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/db2inst4/db00/inv_tbsp2007_ix.dbf' 12800) ON
DBPARTITIONNUMS (0)
USING (FILE '/db2/db2inst4/db01/inv_tbsp2007_ix.dbf' 12800) ON
DBPARTITIONNUMS (1)
222 Database Partitioning, Table Partitioning, and MDC for DB2 9

USING (FILE '/db2/db2inst4/db02/inv_tbsp2007_ix.dbf' 12800) ON
DBPARTITIONNUMS (2)
USING (FILE '/db2/db2inst4/db03/inv_tbsp2007_ix.dbf' 12800) ON
DBPARTITIONNUMS (3)
USING (FILE '/db2/db2inst4/db04/inv_tbsp2007_ix.dbf' 12800) ON
DBPARTITIONNUMS (4)
USING (FILE '/db2/db2inst4/db05/inv_tbsp2007_ix.dbf' 12800) ON
DBPARTITIONNUMS (5)
USING (FILE '/db2/db2inst4/db06/inv_tbsp2007_ix.dbf' 12800) ON
DBPARTITIONNUMS (6)
USING (FILE '/db2/db2inst4/db07/inv_tbsp2007_ix.dbf' 12800) ON
DBPARTITIONNUMS (7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;

CREATE TABLE invoice_part_2007
(
CUSTNO BIGINT NOT NULL ,
TRANSACTION_DATE DATE NOT NULL ,
AMOUNT DECIMAL (15, 2) NOT NULL ,
CUSTNAME CHARACTER (10) NOT NULL ,
TIME TIME NOT NULL,
REGION INT NOT NULL
)
INDEX IN inv_tbsp2007_ix
PARTITION BY RANGE (TRANSACTION_DATE NULLS LAST)
(
PARTITION inv_0 STARTING FROM ('01/01/2007') INCLUSIVE IN inv_tbsp2007_00 ,
PARTITION inv_1 STARTING FROM ('04/01/2007') INCLUSIVE IN inv_tbsp2007_01 ,
PARTITION inv_2 STARTING FROM ('07/01/2007') INCLUSIVE IN inv_tbsp2007_02 ,
PARTITION inv_3 STARTING FROM ('10/01/2007') INCLUSIVE ENDING AT ('12/31/2007')
INCLUSIVE IN inv_tbsp2007_03
);

Note the shortened version of the range partitioning syntax where the ENDING
AT parameter is implied.

We inserted data into the table using the statement in Example 6-5. As you can
see, there was considerable randomization of the data. However, the insert was
very quick due to the partitioned database resources and the table partitioning
that allow the distribution of the containers over a large number of physical
drives.

Example 6-5 Insert command for random data

INSERT INTO invoice_part_2007 (custno, transaction_date, amount,
custname,time, region)
WITH custnos(custno) AS
 Chapter 6. Using database partitioning, table partitioning, and MDC together 223

(VALUES(1) UNION ALL
 SELECT custno+1 FROM custnos WHERE custno < 1000000)
SELECT custno,
 DATE(732677 + RAND()*364) ,
 decimal(50000 + RAND()*90000),
 TRANSLATE (CHAR(BIGINT(RAND() * 100000000)), 'abcdefgHij',
'1234567890'),
 current time -(RAND()*86400) seconds,
 integer(1 + rand()*6)
FROM custnos
;

As mentioned in Chapter 4, “Table partitioning” on page 125, you need to keep
the number of containers and the size of the containers for a particular table
space uniform across all database partitions. But with table partitioning added,
you can now have varying numbers of containers between table spaces that are
used in the partitioned table. This is shown in Figure 6-2 on page 225.

This allows you to not only distribute the workload for a table across multiple
database partitions but across a greater number of disk drives. The result of this
is that the combined advantages of database partitioning and table space
partitioning have a multiplying effect with regard to I/O performance.
224 Database Partitioning, Table Partitioning, and MDC for DB2 9

Figure 6-2 Multiple containers per table space in a partitioned table in a partitioned
database

An example of the SQL to distribute the data over differing containers is in
Example 6-6. The SQL statements show that you have uniformity across
database partitions but have the flexibility to vary containers by table space.
There are multiple containers for table space INV_TBSP2007_03 to allow for a
large data growth in the fourth quarter of 2007.

Example 6-6 Multiple table space containers

CREATE DATABASE PARTITION GROUP dbpg2007 ON DBPARTITIONNUMS (0 to 7);

CREATE BUFFERPOOL dbpg2007bp1 IMMEDIATE DATABASE PARTITION GROUP dbpg2007 SIZE
1000 AUTOMATIC
PAGESIZE 4 K ;

CREATE TABLESPACE inv_tbsp2007_00 IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/mclaua/db00/inv_tbsp2007_00.dbf' 12800) ON DBPARTITIONNUMS
(0)

Cluster
Database partition group 01

DB Partition 1 DB Partition 2 DB Partition 3 DB Partition 4 DB Partition 5

C2 C3 C4 C5

Table space 1

C11 C21

C1

Table space 2

more
partitions

C12

m
ore

 table spaces

C22 C32

C31 C41 C51

C42 C52
 Chapter 6. Using database partitioning, table partitioning, and MDC together 225

USING (FILE '/db2/mclaua/db01/inv_tbsp2007_00.dbf' 12800) ON DBPARTITIONNUMS
(1)
USING (FILE '/db2/mclaua/db02/inv_tbsp2007_00.dbf' 12800) ON DBPARTITIONNUMS
(2)
USING (FILE '/db2/mclaua/db03/inv_tbsp2007_00.dbf' 12800) ON DBPARTITIONNUMS
(3)
USING (FILE '/db2/mclaua/db04/inv_tbsp2007_00.dbf' 12800) ON DBPARTITIONNUMS
(4)
USING (FILE '/db2/mclaua/db05/inv_tbsp2007_00.dbf' 12800) ON DBPARTITIONNUMS
(5)
USING (FILE '/db2/mclaua/db06/inv_tbsp2007_00.dbf' 12800) ON DBPARTITIONNUMS
(6)
USING (FILE '/db2/mclaua/db07/inv_tbsp2007_00.dbf' 12800) ON DBPARTITIONNUMS
(7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;

CREATE TABLESPACE inv_tbsp2007_01 IN DATABASE PARTITION GROUP DBPG2007 MANAGED
BY DATABASE
USING (FILE '/db2/mclaua/db00/inv_tbsp2007_01.dbf' 12800) ON DBPARTITIONNUMS
(0)
USING (FILE '/db2/mclaua/db01/inv_tbsp2007_01.dbf' 12800) ON DBPARTITIONNUMS
(1)
USING (FILE '/db2/mclaua/db02/inv_tbsp2007_01.dbf' 12800) ON DBPARTITIONNUMS
(2)
USING (FILE '/db2/mclaua/db03/inv_tbsp2007_01.dbf' 12800) ON DBPARTITIONNUMS
(3)
USING (FILE '/db2/mclaua/db04/inv_tbsp2007_01.dbf' 12800) ON DBPARTITIONNUMS
(4)
USING (FILE '/db2/mclaua/db05/inv_tbsp2007_01.dbf' 12800) ON DBPARTITIONNUMS
(5)
USING (FILE '/db2/mclaua/db06/inv_tbsp2007_01.dbf' 12800) ON DBPARTITIONNUMS
(6)
USING (FILE '/db2/mclaua/db07/inv_tbsp2007_01.dbf' 12800) ON DBPARTITIONNUMS
(7)
AUTORESIZE YES
BUFFERPOOL DBPG2007bp1 ;

CREATE TABLESPACE inv_tbsp2007_02 IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/mclaua/db00/inv_tbsp2007_02.dbf' 12800) ON DBPARTITIONNUMS
(0)
USING (FILE '/db2/mclaua/db01/inv_tbsp2007_02.dbf' 12800) ON DBPARTITIONNUMS
(1)
USING (FILE '/db2/mclaua/db02/inv_tbsp2007_02.dbf' 12800) ON DBPARTITIONNUMS
(2)
USING (FILE '/db2/mclaua/db03/inv_tbsp2007_02.dbf' 12800) ON DBPARTITIONNUMS
(3)
226 Database Partitioning, Table Partitioning, and MDC for DB2 9

USING (FILE '/db2/mclaua/db04/inv_tbsp2007_02.dbf' 12800) ON DBPARTITIONNUMS
(4)
USING (FILE '/db2/mclaua/db05/inv_tbsp2007_02.dbf' 12800) ON DBPARTITIONNUMS
(5)
USING (FILE '/db2/mclaua/db06/inv_tbsp2007_02.dbf' 12800) ON DBPARTITIONNUMS
(6)
USING (FILE '/db2/mclaua/db07/inv_tbsp2007_02.dbf' 12800) ON DBPARTITIONNUMS
(7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;

CREATE TABLESPACE inv_tbsp2007_03 IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/mclaua/db00_1/inv_tbsp2007_03.dbf' 12800 ,
 FILE '/db2/mclaua/db00_2/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (0)
USING (FILE '/db2/mclaua/db01_1/inv_tbsp2007_03.dbf' 12800 ,
 FILE '/db2/mclaua/db01_2/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (1)
USING (FILE '/db2/mclaua/db02_1/inv_tbsp2007_03.dbf' 12800 ,
 FILE '/db2/mclaua/db02_2/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (2)
USING (FILE '/db2/mclaua/db03_1/inv_tbsp2007_03.dbf' 12800 ,
 FILE '/db2/mclaua/db03_2/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (3)
USING (FILE '/db2/mclaua/db04_1/inv_tbsp2007_03.dbf' 12800 ,
 FILE '/db2/mclaua/db04_2/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (4)
USING (FILE '/db2/mclaua/db05_1/inv_tbsp2007_03.dbf' 12800 ,
 FILE '/db2/mclaua/db05_2/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (5)
USING (FILE '/db2/mclaua/db06_1/inv_tbsp2007_03.dbf' 12800 ,
 FILE '/db2/mclaua/db06_2/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (6)
USING (FILE '/db2/mclaua/db07_1/inv_tbsp2007_03.dbf' 12800 ,
 FILE '/db2/mclaua/db07_2/inv_tbsp2007_03.dbf' 12800) ON
DBPARTITIONNUMS (7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;

CREATE TABLESPACE inv_tbsp2007_ix IN DATABASE PARTITION GROUP dbpg2007 MANAGED
BY DATABASE
USING (FILE '/db2/mclaua/db00/inv_tbsp2007_ix.dbf' 12800) ON DBPARTITIONNUMS
(0)
USING (FILE '/db2/mclaua/db01/inv_tbsp2007_ix.dbf' 12800) ON DBPARTITIONNUMS
(1)
USING (FILE '/db2/mclaua/db02/inv_tbsp2007_ix.dbf' 12800) ON DBPARTITIONNUMS
(2)
 Chapter 6. Using database partitioning, table partitioning, and MDC together 227

USING (FILE '/db2/mclaua/db03/inv_tbsp2007_ix.dbf' 12800) ON DBPARTITIONNUMS
(3)
USING (FILE '/db2/mclaua/db04/inv_tbsp2007_ix.dbf' 12800) ON DBPARTITIONNUMS
(4)
USING (FILE '/db2/mclaua/db05/inv_tbsp2007_ix.dbf' 12800) ON DBPARTITIONNUMS
(5)
USING (FILE '/db2/mclaua/db06/inv_tbsp2007_ix.dbf' 12800) ON DBPARTITIONNUMS
(6)
USING (FILE '/db2/mclaua/db07/inv_tbsp2007_ix.dbf' 12800) ON DBPARTITIONNUMS
(7)
AUTORESIZE YES
BUFFERPOOL dbpg2007bp1 ;

CREATE TABLE invoice_part_2007
(
custno BIGINT NOT NULL ,
transaction_date DATE NOT NULL ,
amount DECIMAL (15, 2) NOT NULL ,
custname CHARACTER (10) NOT NULL ,
time TIME NOT NULL,
region INT NOT NULL
)
INDEX IN inv_tbsp2007_ix
PARTITION BY RANGE (TRANSACTION_DATE NULLS LAST)
(
PARTITION inv_0 STARTING FROM ('01/01/2007') INCLUSIVE IN inv_tbsp2007_00 ,
PARTITION inv_1 STARTING FROM ('04/01/2007') INCLUSIVE IN inv_tbsp2007_01 ,
PARTITION inv_2 STARTING FROM ('07/01/2007') INCLUSIVE IN inv_tbsp2007_02 ,
PARTITION inv_3 STARTING FROM ('10/01/2007') INCLUSIVE ENDING AT ('12/31/2007')
INCLUSIVE IN inv_tbsp2007_03
);

6.3 Table partitioning and MDC

MDC tables can take advantage of table partitioning to provide scalability and
roll-in/roll-out functionality. For the query performance, MDC is best for querying
multiple dimensions, and table partitioning helps through partition elimination.
Use table partitioning and MDC together for maximum benefit. Use the Design
Advisor in designing a table partitioned table with MDC. You first define table
partitioning based on roll-out strategy. With ranges defined, Design Advisor
recommends appropriate MDC dimensions.

Because table partitioning performs a similar function to clustering, there is
generally no benefit in partitioning a table on a column and then using that same
column as a dimension. However, if the partitioning is at a coarser granularity
228 Database Partitioning, Table Partitioning, and MDC for DB2 9

than individual column values, using the column as a dimension might provide a
query performance benefit.

For example, consider a table that contains a column of the form YYYYMM, which
contains a financial reporting period, where the table is to contain several years
of data with the oldest year rolled out annually. Partitioning the table on this
column so that each partition contains one year of information is reasonable for
roll-out purposes, while using the column as a dimension (which has monthly
granularity) can improve queries that reported by month or quarter.

When determining the page size and extent size for the table, table partitioning
affects the average rows in a cell the same way that database partitioning does.
Instead of working with the overall average rows in a cell, compute the average
rows in a cell for each range. If working with a new table, the simplest estimation
is to divide the estimated overall rows in a cell by the number of ranges. For an
existing table, use an SQL query similar to Example 6-7 to compute the average
rows in a cell and standard deviation for each range. Analyze the results as
shown in 5.1.4, “Estimate space requirements” on page 180.

Example 6-7 Computing average rows per cell across table ranges

-- rangeN_low_value is the lower limit for range interval N
-- rangeN_high_value is the upper limit
-- table1.rangekey is the TABLE partitioning key

WITH rangelist (range, range_low, range_high) AS (
VALUES (1, 'range1_low_value', 'range1_high_value'),
 (2, 'range2_low_value', 'range2_high_value'),
 ...
 (N, ' rangeN_low_value', 'rangeN_high_value'))
SELECT range, COUNT(*) cells, AVG(RowsPerCell) AS RowsPerCell,
 MIN(RowsPerCell) AS MinRowsPerCell,
 MAX(RowsPerCell) AS maxRowsPerCell,
 STDDEV(RowsPerCell) AS sdRowsPerCell
FROM (
 SELECT range, col1, col2,
 ... ,
 colN, COUNT(*) RowsPerCell
 FROM table1 INNER JOIN rangelist
 ON table1.rangekey BETWEEN range_low
 AND range_high
 GROUP BY range, col1, col2, ... , colN) cell_table
GROUP BY rollup(range)
ORDER BY 1
 Chapter 6. Using database partitioning, table partitioning, and MDC together 229

When you detach a partition from a data partitioned MDC table, the new table is
an MDC table with the same dimensions as the original table. The new table
cannot be referenced until you commit the detach. The block indexes for the new
table are built when you first access the new table. Consequently, the first
access experiences reduced performance. Similarly, when you want to attach a
table to the partitioned MDC table, it must be dimensioned identically to the
partitioned table.

Example 6-8 shows a simple table definition that includes both table partitioning
and MDC.

Example 6-8 ORDERS table with table partitioning and MDC

CREATE TABLE tpmdc.orders(o_orderkey INTEGER NOT NULL,
 o_custkey INTEGER NOT NULL,
 o_orderstatus CHAR(1) NOT NULL,
 o_totalprice DECIMAL(15,2) NOT NULL,
 o_orderdate DATE NOT NULL,
 o_orderpriority CHAR(15) NOT NULL,
 o_clerk CHAR(15) NOT NULL,
 o_shippriority INTEGER NOT NULL,
 o_comment VARCHAR(79) NOT NULL,
 PRIMARY KEY(o_orderkey))IN tbsp1
ORGANIZE BY (o_orderpriority, o_shippriority)
PARTITION BY RANGE (o_orderdate NULLS LAST)
(PARTITION order_92 STARTING FROM '01/01/1992' INCLUSIVE,
 PARTITION order_93 STARTING FROM '01/01/1993' INCLUSIVE,
 PARTITION order_94 STARTING FROM '01/01/1994' INCLUSIVE,
 PARTITION order_95 STARTING FROM '01/01/1995' INCLUSIVE,
 PARTITION order_96 STARTING FROM '01/01/1996' INCLUSIVE,
 PARTITION order_97 STARTING FROM '01/01/1997' INCLUSIVE,
 PARTITION order_98 STARTING FROM '01/01/1998' INCLUSIVE
 ENDING at '12/31/1998' INCLUSIVE)

In this example, the ORDERS table has dimension keys of O_ORDERPRIORITY and
O_SHIPPRIORITY for query purposes. The table is also range-partitioned by
O_ORDERDATE to allow orders to be rolled-out of the table by year as they age.
When we detach the ORDER_92 partition into a table, we get a new MDC table.
Before we can access the data in that table, we first have to execute a SET
INTEGRITY statement on the table. Our first access then causes the block
indexes to be built for the table.

Example 6-9 on page 231 shows the SQL statement that can be used to analyze
the existing ORDERS table to determine the average rows in a cell by range. Note
230 Database Partitioning, Table Partitioning, and MDC for DB2 9

the casting of the values in the RANGELIST table to match the data type of the
column used for range partitioning.

Example 6-9 SQL to compute average rows in a cell by range for the ORDERS table

WITH rangelist (range , range_low , range_high) AS
(VALUES (1,DATE('1992-01-01'),DATE('1992-12-31')),
 (2,DATE('1993-01-01'),DATE('1993-12-31')),
 (3,DATE('1994-01-01'),DATE('1994-12-31')),
 (4,DATE('1995-01-01'),DATE('1995-12-31')),
 (5,DATE('1996-01-01'),DATE('1996-12-31')),
 (6,DATE('1997-01-01'),DATE('1997-12-31')),
 (7,DATE('1998-01-01'),DATE('1998-12-31'))
)
SELECT range, COUNT(*) cells, AVG(RowsPerCell) AS RowsPerCell,
 MIN(RowsPerCell) AS MinRowsPerCell,
 MAX(RowsPerCell) AS maxRowsPerCell,
 STDDEV(RowsPerCell) AS sdRo wsPerCell
FROM (
 SELECT range, o_shippriority, o_orderpriority,
 COUNT(*), RowsPerCell
 FROM tpcd.orders INNER JOIN rangelist
 ON o_orderdate
 BETWEEN range_low AND range_high
 GROUP BY range, o_shippriority, o_orderpriority
) cell_table
GROUP BY ROLLUP(range)
ORDER BY 1

6.4 Database partitioning, table partitioning, and MDC

If conditions are appropriate, it is possible to utilize all three partitioning
technologies on a single table. The primary conditions that you have to meet
include:

� A large volume of data

� Periodic removal of data based on a certain range of values

� Frequently queried columns with relatively low cardinalities or foreign keys in
a fact table

All the considerations about table spaces, partition keys, and dimensions that
were mentioned in conjunction with attaching and detaching tables apply.
 Chapter 6. Using database partitioning, table partitioning, and MDC together 231

A table such as that defined in 5.5.4, “Using MDC to provide roll-out functionality”
on page 211 might meet all these requirements:

� With 1,500,000,000 rows per year, the table contains a large volume of data.

Use database partitioning to distribute this data across several database
partitions.

� Only the most recent three or four years of data is kept.

Use the ACCT_YR column to partition the table in each database partition by
year. Use the DETACH command to remove years of data as they are no
longer needed.

� The columns ending in “APSK” are foreign keys to dimension tables, so they
are good candidates for dimensions.

Create dimension indexes on the foreign keys. You might have to create
computed columns from the APSK columns to get the average rows per block
high enough to be useful.

Computation of page sizes and extent sizes follows the patterns already
established. For a new table, divide the estimated rows in a cell by the number of
ranges and then divide that result by the number of database partitions to get an
average number of rows in a cell within a range within a database partition. For
an existing non-distributed table, use the SQL query in Example 6-7 on page 229
to compute the average rows in a cell by range and divide that result by the
number of database partitions. Also, divide the standard deviation by the number
of database partitions. For an existing distributed table, use the SQL in
Example 6-10 to compute the average rows in a cell by range and database
partition and the standard deviation.

Example 6-10 Computing average rows in cells across table ranges

WITH rangelist (range, range_low, range_high) AS (
VALUES (1, 'range1_low_value', 'range1_high_value'),
 (2, 'range2_low_value', 'range2_high_value'),
 ...
 (N, 'rangeN_low_value', 'rangeN_high_value'))
SELECT partition, range, COUNT(*) cells, AVG(RowsPerCell)
 AS RowsPerCell,
 MIN(RowsPerCell) AS MinRowsPerCell,
 MAX(RowsPerCell) AS maxRowsPerCell,
 STDDEV(RowsPerCell) AS sdRowsPerCell
FROM (
 SELECT DBPARTITIONNUM(col1) partition, range, col1,
 col2, ... ,
 colN, COUNT(*) RowsPerCell
 FROM table1 inner join rangelist
232 Database Partitioning, Table Partitioning, and MDC for DB2 9

 ON table1.rangekey
 BETWEEN range_low AND range_high
 GROUP BY DBPARTITIONNUM(col1), range, col1, col2,
 ... ,
 colN) cell_table
GROUP BY ROLLUP(partition, range)
ORDER BY 1
 Chapter 6. Using database partitioning, table partitioning, and MDC together 233

234 Database Partitioning, Table Partitioning, and MDC for DB2 9

Appendix A. Configuring DB2 for SSH in
a partitioned environment

When you set up your partitioned environment on UNIX or Linux, the
inter-partition communication normally uses the remote shell (rsh). While rsh
provides an easy to set up and maintain solution, it lacks the security that your
organization might require. The secured shell (ssh) provides the needed security,
and this appendix shows you how to set up DB2 to use ssh.

You can choose to use either the Rivest-Shamir-Adleman algorithm (RSA) or the
digital signature algorithm (DSA) encryption when setting up ssh. You need to
base this decision on your own security requirements. RSA and DSA are two
encryption methods that you can used with ssh, because both methods provide a
secure environment.

A

© Copyright IBM Corp. 2007. All rights reserved. 235

A.1 Setting up public key authentication

Public key-based authentication allows a single user ID (in our case, the DB2
instance owning ID in our Data Partitioning Feature (DPF) environment) to log in
as the same user ID on each partition server without being prompted for a
password. This can be advantageous if you have a large number of partitions in
your DPF environment. Public key-based authentication is considered to be less
of a security exposure, because only one particular user is ever configured to ssh
or log in to other hosts without being prompted for a password.

We carry out the setup for public key authentication from the instance owning
partition server. In our example, serverA is the instance owning partition server,
and we log on with the instance owning ID. The setup procedures are:

1. Generate an RSA or DSA key pair.

The first step in setting up public key authentication is to generate an RSA or
DSA key pair. When you are logged in as the instance owner, navigate to the
.ssh directory in the instance home directory. If the .ssh directory does not
exist, you need to create one. Ensure that the .ssh directory does not allow
group or other write access.

Example A-1 shows generating a public key/private key pair for RSA.

Example: A-1 Generating an RSA-encrypted key pair

$ ssh-keygen -t rsa

Or you can generate a DSA key pair, see Example A-2.

Example: A-2 Generating a DSA-encrypted key pair

$ ssh-keygen -t dsa

You are prompted for input but just accept the default. You then are prompted
to enter a passphrase. In our environment, we do not want a passphrase so
we press Enter twice. If you enter a passphrase, ssh challenges every
authentication attempt. DB2 does not allow rsh to prompt for additional
verification.

Two new files are generated in the ~/.ssh directory, id_rsa (the private key)
and id_rsa.pub (the public key), for RSA encryption. In a similar manner,
name files are generated for DSA encryption.

2. Enable the key pair.

Example A-3 on page 237 shows the commands to enable the RSA key pair.
236 Database Partitioning, Table Partitioning, and MDC for DB2 9

Example: A-3 Enabling the RSA key pair

$ cd ~/.ssh
$ mv id_rsa identity
$ chmod 600 identity
$ cat id_rsa.pub >> authorized_keys
$ chmod 644 authorized_keys
$ rm id_rsa.pub

See Example A-4 to enable a DSA key pair.

Example: A-4 Enabling the DSA key pair

$ cd ~/.ssh
$ mv id_dsa identity
$ chmod 600 identity
$ cat id_dsa.pub >> authorized_keys
$ chmod 644 authorized_keys
$ rm id_dsa.pub

3. Set up the host trust relationships.

Because we have not set up any host trust relationships, the first time that ssh
is issued to a new host, a message appears stating that the authenticity of the
target host cannot be established. To overcome this situation, we can form a
trust relationship with the other hosts in our DPF environment. To achieve this
trust relationship, use the ssh-keyscan utility to gather the public host key for
each host in the DPF environment and save the keys in the known_hosts file.
In our example, we only have two partition servers, serverA and serverB.

Example A-5 shows how to use the ssh-keyscan utility to gather RSA keys to
set up the host trust relationships.

Example: A-5 Gathering the RSA public keys

$ ssh-keyscan -t rsa serverA,serverA.my.domain.com,192.168.0.10
>>~/.ssh/known_hosts
$ ssh-keyscan -t rsa serverB,serverB.my.domain.com,192.168.0.11
>>~/.ssh/known_hosts

Example A-6 on page 238 shows how to use the ssh-keyscan to gather DSA
keys to set up the host trust relationships.
 Appendix A. Configuring DB2 for SSH in a partitioned environment 237

Example: A-6 Gathering the DSA public keys

$ ssh-keyscan -t dsa serverA,serverA.my.domain.com,192.168.0.10
>>~/.ssh/known_hosts
$ ssh-keyscan -t dsa serverB,serverB.my.domain.com,192.168.0.11
>>~/.ssh/known_hosts

A.2 Setting up host-based authentication

Host-based ssh authentication differs in that it allows any user ID from serverA to
log in as the same user ID on serverB using ssh. The ssh client on serverA must
be configured to use host-based authentication and the ssh server on serverB
needs to allow host-based authentication. In your DPF environment, each
partition server needs to be configured to use host-based authentication and
each partition server must have the ssh client and ssh server configured
correctly.

A.2.1 SSH server configuration

To configure the ssh server, use the following steps:

1. Edit the ssh server configuration file.

The ssh server configuration file, sshd_config, is found in /etc/ssh on AIX,
Linux, and Solaris and in /opt/ssh/etc on Hewlett-Packard Unix (HP-UX). You
have to log in as the root user to edit this file. Change the
HostbasedAuthentication parameter to Yes.
In Example A-7, we have added an additional line to the sshd_config file and
left the original line commented out. This allows the ssh server to accept
host-based authentication requests from the ssh clients.

Example: A-7 Edit the sshd_config file

vi sshd_config

Then edit or change the line;
HostbasedAuthentication no
HostbasedAuthentication yes

2. Edit the shosts.equiv file.

The shosts.equiv file can be found in /etc/ssh on AIX and Linux, in /etc on
Solaris, and in /opt/ssh/etc on HP-UX. This file might not exist; therefore, you
must create one and ensure that it is owned by the root user and only allows
238 Database Partitioning, Table Partitioning, and MDC for DB2 9

user read and write access and group/other read access. Each host must be
able to communicate with every other host in the DPF environment, so you
must set up the shosts.equiv file in such a way that it can be reused on all
hosts or partition servers. Edit the file as shown in Example A-8.

Example: A-8 Edit the shosts.equiv file

serverA
serverA.domain.com
serverB
serverB.domain.com

3. Edit the ssh_known_hosts file.

The ssh server host system needs to have access to the ssh client host’s
public key and, for host-based authentication, the trust mechanism looks for
public keys in the ssh_known_hosts file. The ssh_known_hosts file is found in
the /etc/ssh directory on AIX, Linux, and Solaris and in /opt/ssh/etc on HP-UX.
As with the shosts.equiv file, you might need to create the ssh_known_hosts
file if it does not exist. Ensure that it is owned by the root user and only allows
user read and write access and group/other read access.

Add the client machine’s unqualified host name, fully qualified host name, and
IP address to the ssh_known_hosts file. You can use the ssh-keyscan utility
to populate this file. The command for this is shown in Example A-9 for RSA
and Example A-10 for DSA. You need to change the directory (cd) to /etc/ssh
on AIX Linux and Solaris and to /opt/ssh/etc on HP-UX before running this
command.

Example: A-9 Updating the ssh_known_hosts file for RSA encryption

$ ssh-keyscan -t rsa serverA,serverA.domain.com,192.168.0.10
>>ssh_known_hosts
$ ssh-keyscan -t rsa serverB,serverB.domain.com,192.168.0.10
>>ssh_known_hosts

Example: A-10 Updating the ssh_known_hosts file for DSA encryption

$ ssh-keyscan -t dsa serverA,serverA.domain.com,192.168.0.10
>>ssh_known_hosts
$ ssh-keyscan -t dsa serverB,serverB.domain.com,192.168.0.10
>>ssh_known_hosts

4. Restart the ssh daemon.

After you update the ssh_known_hosts file, you need to restart the ssh
daemon for the changes to take effect. Sending a SIGHUP command to the
ssh daemon so that it restarts and reloads its configuration file is one way to
 Appendix A. Configuring DB2 for SSH in a partitioned environment 239

do this. This only affect future ssh sessions, not the sessions currently
running.

First, we find the pid for ssh daemon (sshd) as shown in Example A-11.

Example: A-11 Finding the sshd pid

ps -ef | grep sshd
root 1470502 57456 0 15:18:48 - 0:00 /usr/sbin/sshd
root 1544638 1999180 0 16:08:55 pts/3 0:00 grep sshd

This tells us the pid is 1470502. We can now tell the sshd process to reread
the sshd_config file with the command in Example A-12.

Example: A-12 Restart the ssh daemon

kill -HUP 1470502

Alternatively, you can restart the sshd process using the following commands,
which are platform-specific:

– Red Hat linux
service sshd restart

– Suse Linux

/etc/rc.d/sshd restart

– Solaris 9 and below

/etc/init.d/sshd stop
/etc/init.d/sshd start

– Solaris 10

svcadm disable ssh
svcadm enable ssh

– AIX

stopsrc -s sshd
startsrc -s sshd

– HP-UX

/sbin/init.d/sshd2 atop
/sbin/init.d/sshd2 start

You must execute the steps that we performed to enable the ssh server on every
partition server in your DPF environment.
240 Database Partitioning, Table Partitioning, and MDC for DB2 9

A.2.2 SSH client configuration

The first step in setting up the ssh client is to edit the ssh_config file. You can
locate this file in /etc/ssh on AIX, Linux, and Solaris and in /opt/ssh/etc on
HP-UX. Edit the file and change the line HostbasedAuthentication from no to
yes as shown in Example A-13.

Example: A-13 Editing the ssh_config file

HostbasedAuthentication no
HostbasedAuthentication yes

You then need to add a line to the ssh_config file to tell the ssh client to use the
ssh-keysign utility to read the host’s private key as shown in Example A-14.

Example: A-14 Enable the EnableSSHKeysign parameter

EnableSSHKeysign yes

A.3 Configuring DB2 to use ssh

To set up DB2 to start with ssh support, you must enable the DB2 registry
variable DB2RSHCMD and point it to the path of the ssh command shell.
Example A-15 shows the db2set command. The default is for DB2 to use rsh;
therefore, you only need to set this variable if using ssh.

Example: A-15 Enable DB2 to use ssh

db2set DB2RSHCMD=/usr/bin/ssh
 Appendix A. Configuring DB2 for SSH in a partitioned environment 241

242 Database Partitioning, Table Partitioning, and MDC for DB2 9

Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks publications Web server. Point your Web
browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247467/

Alternatively, you can go to the IBM Redbooks publications Web site at:

http://www.redbooks.ibm.com/

Select Additional materials and open the directory that corresponds with the
IBM Redbooks publication form number, SG247467.

B

© Copyright IBM Corp. 2007. All rights reserved. 243

http://www.redbooks.ibm.com/
ftp://www.redbooks.ibm.com/redbooks/SG247467/

Using the Web material

The additional Web material that accompanies this book includes the following
files:

File name Description
MDC Page and Block Size Estimator.zip Lotus 123 and Excel spread sheets

for estimating MDC page and block
size.

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space: 30 KB minimum
Operating System: Windows or Linux
Processor: 486 or higher
Memory: 256 MB

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
244 Database Partitioning, Table Partitioning, and MDC for DB2 9

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get Redbooks
publications” on page 248. Note that some of the documents referenced here
might be available in softcopy only.

� Up and Running with DB2 UDB ESE: Partitioning for Performance in an
e-Business Intelligence World, SG24-6917

Other publications

These publications are also relevant as further information sources:

IBM - DB2 9
� What's New, SC10-4253

� Administration Guide: Implementation, SC10-4221

� Administration Guide: Planning, SC10-4223

� Administrative API Reference, SC10-4231

� Administrative SQL Routines and Views, SC10-4293

� Administration Guide for Federated Systems, SC19-1020

� Call Level Interface Guide and Reference, Volume 1, SC10-4224

� Call Level Interface Guide and Reference, Volume 2, SC10-4225

� Command Reference, SC10-4226

� Data Movement Utilities Guide and Reference, SC10-4227

� Data Recovery and High Availability Guide and Reference, SC10-4228

� Developing ADO.NET and OLE DB Applications, SC10-4230

� Developing Embedded SQL Applications, SC10-4232

� Developing Java Applications, SC10-4233
© Copyright IBM Corp. 2007. All rights reserved. 245

� Developing Perl and PHP Applications, SC10-4234

� Developing SQL and External Routines, SC10-4373

� Getting Started with Database Application Development, SC10-4252

� Getting started with DB2 installation and administration on Linux and
Windows, GC10-4247

� Message Reference Volume 1, SC10-4238

� Message Reference Volume 2, SC10-4239

� Migration Guide, GC10-4237

� Performance Guide, SC10-4222

� Query Patroller Administration and User's Guide, GC10-4241

� Quick Beginnings for DB2 Clients, GC10-4242

� Quick Beginnings for DB2 Servers, GC10-4246

� Spatial Extender and Geodetic Data Management Feature User's Guide and
Reference, SC18-9749

� SQL Guide, SC10-4248

� SQL Reference, Volume 1, SC10-4249

� SQL Reference, Volume 2, SC10-4250

� System Monitor Guide and Reference, SC10-4251

� Troubleshooting Guide, GC10-4240

� Visual Explain Tutorial, SC10-4319

� XML Extender Administration and Programming, SC18-9750

� XML Guide, SC10-4254

� XQuery Reference, SC18-9796

� DB2 Connect User's Guide, SC10-4229

� DB2 9 PureXML Guide, SG24-7315

� Quick Beginnings for DB2 Connect Personal Edition, GC10-4244

� Quick Beginnings for DB2 Connect Servers, GC10-4243

IBM - DB2 8.2
� What’s New V8, SC09-4848-01

� Administration Guide: Implementation V8, SC09-4820-01

� Administration Guide: Performance V8, SC09-4821-01

� Administration Guide: Planning V8, SC09-4822-01
246 Database Partitioning, Table Partitioning, and MDC for DB2 9

� Application Development Guide: Building and Running Applications V8,
SC09-4825-01

� Application Development Guide: Programming Client Applications V8,
SC09-4826-01

� Application Development Guide: Programming Server Applications V8,
SC09-4827-01

� Call Level Interface Guide and Reference, Volume 1, V8, SC09-4849-01

� Call Level Interface Guide and Reference, Volume 2, V8, SC09-4850-01

� Command Reference V8, SC09-4828-01

� Data Movement Utilities Guide and Reference V8, SC09-4830-01

� Data Recovery and High Availability Guide and Reference V8, SC09-4831-01

� Guide to GUI Tools for Administration and Development, SC09-4851-01

� Installation and Configuration Supplement V8, GC09-4837-01

� Quick Beginnings for DB2 Clients V8, GC09-4832-01

� Quick Beginnings for DB2 Servers V8, GC09-4836-01

� Replication and Event Publishing Guide and Reference, SC18-7568

� SQL Reference, Volume 1, V8, SC09-4844-01

� SQL Reference, Volume 2, V8, SC09-4845-01

� System Monitor Guide and Reference V8, SC09-4847-01

� Data Warehouse Center Application Integration Guide Version 8 Release 1,
SC27-1124-01

� DB2 XML Extender Administration and Programming Guide Version 8
Release 1, SC27-1234-01

� Federated Systems PIC Guide Version 8 Release 1, GC27-1224-01

Online resources

These Web sites are also relevant as further information sources:

� DB2 Information Center

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

� Database and Information Management home page

http://www.ibm.com/software/data/
 Related publications 247

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://www-3.ibm.com/software/data/

� DB2 Universal Database home page

http://www.ibm.com/software/data/db2/udb/

� DB2 Technical Support

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/
index.d2w/report

� DB2 online library

http://www.ibm.com/db2/library

How to get Redbooks publications

You can search for, view, or download IBM Redbooks publications, Redpapers,
Technotes, draft publications and Additional materials, as well as order hardcopy
Redbooks, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
248 Database Partitioning, Table Partitioning, and MDC for DB2 9

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-3.ibm.com/software/data/db2/udb/
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www.ibm.com/db2/library

Index

Symbols
.rhosts 50
.ssh 236

A
access method 166
access plan 92, 120
adjustment value 108
administrative view 166
advantage 18
aggregate snapshot data 96
AIC 143
architecture 16
archival logging 20
array 5
asynchronous index cleanup 143
authentication 236

B
binary 98
block 5, 9, 27
block index 9, 178
block prefetching 27
bottlenecks 21
broadcast joins 45
buffer pool 5, 20
bulk data deletion 144
Business Intelligence 22

C
cache 20
cardinality 178, 180
catalog partition 7, 50
catalog system table 160
catalog table 43
cell 13, 178
cell sizes 183
client application 7
clustered data 27
clustering 9
clustering keys 11
collocated join 121
© Copyright IBM Corp. 2007. All rights reserved.
collocated Joins 44
collocated tables 44
collocation 124
column 5
column length 180
concurrent transaction 167
configuration 18
consistency point 159
container 4
container tag 107
contention 144
coordinator node 7
coordinator partition 7, 44
CS 25
cursor stability 25, 166

D
data partition 8, 160
data partition elimination 9
database configuration parameter

DFT_QUERYOPT 120
LOGPATH 21
SHEAPTHRES_SHR 188
SORTHEAP 188
UTIL_HEAP_SIZE 188

database configuration switches 97
database managed space 4, 129
database partition 2, 16
db2_all 87, 99
db2_install 46
db2ckbkp 86
db2evmon 98
db2exfmt 103, 161
db2gpmap 57
db2icrt 79
db2nchg 80
db2ncrt 79
db2ndrop 81
db2nodes.cfg 47
db2pd 99, 166
db2rcmd.exe 81
deadlock 167
Decision Support Systems 20
 249

dimension 9, 11, 178
dimension block index 27–28, 179
dimension columns 27
dimension values 13
directed join 121
directed Joins 44
disk 5
distribution key 5, 20, 40, 123
distribution map 5, 20
DMS 4, 129
domain name 49
double buffering 41
DPLSTPRT 161
DPNUMPRT 161
DP-TABLE 161
DSA 235
DSS 20, 28

E
encryption 235–236
equijoin column 41
escalation 26
event monitor 97, 166
exclusive access 167
extent 5, 9, 27
extent size 5, 180

F
Fast Communication Manager 48
file 5
file system cache 41
fixed length 180
forward rebalance 114
FPAGES 197

G
granularity 126

H
hash value 6
hierarchical table 167
high speed network 16
high-water mark 114, 117
history file 85
home directory 47, 236
host name 239
host trust relationship 237

host-based authentication 238
hosts file 49

I
I/O 5, 18
I/O parallelism 19
IBMCATGROUP 39
IBMDEFAULTGROUP 39
IBMTEMPGROUP 39
id_rsa 236
id_rsa.pub 236
index 4
index maintenance 127
index reorganization 23
index scan 161
index statistics 92
index-SARGable 27
instance level 96
instance owner 2
instance owning partition server 236
instance-owning server 2
intent lock 167
internal buffer 94
inter-partition 81
interpartition 18
Interpartition parallelism 19
intrapartition 18
Intrapartition parallelism 19
IP address 49, 239
isolation level 120, 166

K
key pair 236
keyword 97

L
large object 4, 128
leaf page 9
LOB placement option 151
lock escalation 167
log file 20
log space 127
logical database partition 18
logical layer 3
Logical partition 2
250 Database Partitioning, Table Partitioning, and MDC for DB2 9

M
mass update 167
Massively Parallel Processing 16
MDC 9, 177
memory 2, 16
metadata 7
monitor switch 95
MPP 16
MQT 119
multi-column clustering index 28
multi-partition database 20
multi-partition group 3

N
named pipe 90
netname 48
non-distributed table 232
non-intent locks 26
non-partitioned table 25
normal distribution 183
NPAGES 197

O
OLTP 20
online index creation 129
Online Transaction Processing 20
optimization level 120
option 128

P
page 5
page size 5, 180
parallel 2
parallelism 18
partition attach 8
partition group 3, 5, 20, 39
partition key 8
partitioned environment 5
partitioned instance 2
partitioning key 124
partition-owning server 49
passphrase 236
password 236
performance 5, 22
physical database partition 18
physical node 3
physical objects 128

physical server 2
physical storage 4
point in time 94
pointer 128
predicates 179
prefetch size 5
prefetching 5
prerequisite 178
primary key 124
primary machine 2
Public key-based authentication 236

Q
query 7
query optimization 120
query optimizer 45
query parallelism 19
query performance 22

R
RAID 41
range 8, 106
range specifications 26
range-clustered table 167
raw device 5
RDBMS 1
rebalance 106
rebalancer 115
record 20
recovery 20, 127
Redbooks Web site 248

Contact us xi
region 128
register variables

CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION 120
CURRENT REFRESH AGE 120

regular index 9
remote shell 235
resourcesetname 48
response time 18
reverse rebalance 112, 114, 116
roll-in 8, 22, 126
roll-out 8, 22, 126
round-robin algorithm 6
row count 42
row length 42
row-level index 27, 178
 Index 251

RSA 235
rsh 235

S
scalability 2, 18
scale out 18
scale up 18
Secure shell 235
SET INTEGRITY 127, 174
Setup wizard 49
shared disk 17
shared nothing 16
shared nothing architecture 18
shared-everything architecture 2
shosts.equiv 238
SIGHUP 239
single partition 5
single partition database 20
skew data 56
slice 12
SMP 2, 16
SMS 4, 129, 178
snapshot 94
sorting 20
Space Map Pages 115
space requirements 180
space utilization 23
ssh 235
ssh server configuration file 238
ssh_known_hosts 239
sshd_config 238
ssh-keyscan 237
standard deviation 232
state 97
statistics 180
storing long data remotely 154
strategy 127
stripe 106
stripe set 106
stripe size 41
Symmetric Multiprocessor 16
system catalog 7, 19
System Managed Space 4

T
table function 166
table lock 25
table partition elimination 9

table partitioning 8, 21
table size 23
table sizes 42
table space 4
tape 90
target table 167
terminology 161
text editor 47
throughput 21
timerons 193
transaction 20
transaction log 20
trust mechanism 239
TSM 86
typed table 167

U
uncommitted transaction 160
uniform distribution 56
unique index 124, 160
usage consideration 16
utility parallelism 19

W
workloads 20

X
X/Open Backup Services Application Programmer’s
Interface 86
XBSA 86
252 Database Partitioning, Table Partitioning, and MDC for DB2 9

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Database Partitioning, Table Partitioning, and M
DC for DB2 9

®

SG24-7467-00 ISBN 0738489220

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Database Partitioning,
Table Partitioning, and
MDC for DB2 9

Differentiating
database
partitioning, table
partitioning, and
MDC

Examining
implementation
examples

Discussing best
practices

As organizations strive to do more with less, DB2 Enterprise
Server Edition V9 for Linux, Unix, and Windows contains
innovative features for delivering information on demand and
scaling databases to new levels. The table partitioning, newly
introduced in DB2 9, and the database partitioning feature
provide scalability, performance, and flexibility for data store.
The multi-dimension clustering table enables rows with
similar values across multiple dimensions to be physically
clustered together on disk. This clustering allows for efficient
I/O and provides performance gain for typical analytical
queries.

How are these features and functions different? How do you
decide which technique is best for your database needs?
Can you use more than one technique concurrently?

This IBM Redbooks publication addresses these questions
and more. Learn how to set up and administer database
partitioning. Explore the table partitioning function and how
you can easily add and remove years of data on your
warehouse. Analyze your data to discern how
multi-dimensional clustering can drastically improve your
query performance.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Acknowledgement
	Become a published author
	Comments welcome

	Chapter 1. Introduction to partitioning technologies
	1.1 Databases and partitioning
	1.1.1 Database concepts

	1.2 Table partitioning
	1.2.1 Concepts

	1.3 Multi-dimensional clustering
	1.3.1 Concepts

	Chapter 2. Benefits and considerations of database partitioning, table partitioning, and MDC
	2.1 Database partitioning feature
	2.1.1 The benefits of using database partitioning feature
	2.1.2 Usage considerations

	2.2 Table partitioning
	2.2.1 Benefits
	2.2.2 Usage considerations

	2.3 Multi-dimensional clustering
	2.3.1 Benefits
	2.3.2 Usage considerations

	2.4 Combining usage

	Chapter 3. Database partitioning
	3.1 Requirements
	3.1.1 Supported operating systems and hardware
	3.1.2 Minimum memory requirements

	3.2 Planning considerations
	3.2.1 Deciding on the number of database partitions
	3.2.2 Logical and physical database partitions
	3.2.3 Partition groups
	3.2.4 Distribution maps and distribution keys
	3.2.5 Table spaces and containers
	3.2.6 Sizing the tables
	3.2.7 Buffer pools
	3.2.8 Catalog partition
	3.2.9 Coordinator partition
	3.2.10 Data placement and table join strategies

	3.3 Implementing DPF on UNIX and Linux
	3.3.1 Creating instances and databases
	3.3.2 Defining database partitions
	3.3.3 Setting up inter-partition communications
	3.3.4 Creating database
	3.3.5 Switching partitions
	3.3.6 Adding database partitions
	3.3.7 Removing database partitions
	3.3.8 Creating database partition groups
	3.3.9 Viewing partition groups
	3.3.10 Redistributing partition groups
	3.3.11 Altering database partition groups
	3.3.12 Dropping a database partition group
	3.3.13 Implementing buffer pools
	3.3.14 Implementing table spaces
	3.3.15 Implementing tables

	3.4 Implementing DPF on Windows
	3.4.1 Installing DB2 Enterprise 9 on Windows
	3.4.2 Working with partitioned databases
	3.4.3 DB2 Remote Command Service

	3.5 Administration and management
	3.5.1 DB2 utilities
	3.5.2 Monitoring
	3.5.3 Rebalancer

	3.6 Using Materialized Query Tables to speed up performance in a DPF environment
	3.6.1 An overview of MQTs
	3.6.2 When to consider a MQT
	3.6.3 When to use the MQT
	3.6.4 Intra-database replicated tables and partitioning

	3.7 Best practices
	3.7.1 Selecting the number of partitions
	3.7.2 Distribution key selection
	3.7.3 Collocation

	Chapter 4. Table partitioning
	4.1 Planning considerations
	4.1.1 Roll-in and roll-out strategies
	4.1.2 Range selection
	4.1.3 Handling large objects
	4.1.4 Indexing partitioned tables

	4.2 Implementing table partitioning
	4.2.1 Creating a data partitioned table
	4.2.2 Adding a new partition
	4.2.3 Detaching a partition
	4.2.4 Re-attaching a partition
	4.2.5 RANGE option
	4.2.6 Handling large objects
	4.2.7 Optimal storage configurations for table partitioning
	4.2.8 Partition elimination

	4.3 Administration and management
	4.3.1 Utilities
	4.3.2 DB2 Explain
	4.3.3 Locking considerations
	4.3.4 Troubleshooting
	4.3.5 Using partitioned tables in your existing database
	4.3.6 Authorization levels

	4.4 Best practices

	Chapter 5. Multi-dimensional clustering
	5.1 Planning for the use of MDC on a table
	5.1.1 Verify database configuration
	5.1.2 Determine query workload
	5.1.3 Identify dimensions and columns
	5.1.4 Estimate space requirements
	5.1.5 Adjust design as needed
	5.1.6 DB2 Design Advisor

	5.2 Implementing MDC on a table
	5.3 Administering and monitoring MDC tables
	5.3.1 Utilities
	5.3.2 Monitoring MDC tables
	5.3.3 Explain

	5.4 Application considerations for MDC tables
	5.5 Examples of using MDC
	5.5.1 Applying MDC to the TPC customer table
	5.5.2 Utilizing both dimension and row-level indexes
	5.5.3 Using the Control Center to run DB2 Design Advisor
	5.5.4 Using MDC to provide roll-out functionality
	5.5.5 Using MDC on a fact table in a star schema warehouse

	Chapter 6. Using database partitioning, table partitioning, and MDC together
	6.1 Database partitioning and MDC
	6.2 Database partitioning and table partitioning
	6.2.1 Logical representation
	6.2.2 Implementing a table using table partitioning and database partitioning

	6.3 Table partitioning and MDC
	6.4 Database partitioning, table partitioning, and MDC

	Appendix A. Configuring DB2 for SSH in a partitioned environment
	A.1 Setting up public key authentication
	A.2 Setting up host-based authentication
	A.2.1 SSH server configuration
	A.2.2 SSH client configuration

	A.3 Configuring DB2 to use ssh

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get Redbooks publications
	Help from IBM

	Index
	Back cover

