
MTS, IBM Global Technology Services Korea

© 2008 IBM Corporation

DB2 UDB DPF
Overview and Performance

The Best Reliable Partner for High Availability

**
2008 2008 상반기상반기 효과적인효과적인 시스템시스템 관리를관리를
위한위한 기술기술 세미나세미나 -- COEX, Seoul, KoreaCOEX, Seoul, Korea

이상근 차장(sgelee@kr.ibm.com)

Senior IT Specialist

April 8, 2008

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

2 / 69

1. Architecture and Concepts

2. Installation and Create Objects

3. Join Strategies and Explain

4. Performance Considerations

Agenda

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

3 / 69

1. Architecture and Concepts

2. Installation and Create Objects

3. Join Strategies and Explain

4. Performance Considerations

Agenda

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

4 / 69

DB2 UDB DPF - Shared Nothing Architecture

Partitioned Database Model
- Divided into multiple partitions

- Single system image to user and application

Independent Partitions
- CPU, Memory

- Data, Index, Log

- Locking

Parallel Features
- Parallel Optimization

- Parallel Processing on all partitions

Flexible Configurations
- Add new partitions

- Changes Conf. parameters independently

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

5 / 69

Inter-Partition Parallelism

Break up a query into multiple parts across multiple partitions
Send the query to each database partition used by the table
A single query is performed in parallel
The benefit is speed-up of processor time

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

6 / 69

Intra-Partition Parallelism

Break up a query into multiple parts in a partition

Broken into multiple pieces that can be executed in parallel

Define DBM CFG - INTRA_PARALLEL=YES, DB CFG - DFT_DEGREE >= 1

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

7 / 69

Inter-Partition and Intra-Partition Parallelism

Can use intra-partition parallelism and inter-partition parallelism at the same time.
This can result in an even more dramatic increase in the speed at which queries are
processed.

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

8 / 69

Intra-Partition Parallelism Recommendations

Enabled by DBM CFG - INTRA_PARALLEL, DB CFG – DFT_DEGREE
Enable on DSS and Disable on OLTP
For mixed OLTP/DSS
- set INTRA_PARALLEL=YES, but set DB CFG Parameter DFT_DEGREE=1
- For DSS Query, SET CURRENT DEGREE can be used to set degree of

parallelism greater than one
- If number of DSS users is greater than two times number of CPUs, leave

INTRA_PARALLEL=NO
Parallelism load
- The number of active users multiplied by the degree of parallelism

Ex) 50 active users * 4 parallelism = 200 parallelism load
(200 processes in the run queue)

- A parallelism load of between 1.5 and 2.0 times the number of available CPUs

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

9 / 69

Maximize Parallelism - Function Shipping

The select statement is shipped to each of the worker processes.

The predicates are applied to reduce the number of rows.

The number of columns are also reduced.

Performance gains by reduction of network traffic.

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

10 / 69

DB2 UDB DPF on SMP Environments

Node 1Node 1

Partition 1 Partition 2

Node 2Node 2

Partition 3 Partition 4

Fast Communication Manager

Four partition database is running on an SMP containing any number of processors.
The example shows four logical database partitions on two nodes.
Each database partition has its dedicated resources.
The Shared Nothing architecture still being used in SMP.

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

11 / 69

DB2 UDB DPF Instance & Database

It is possible to have multiple DB2 UDB
DPF instance on same group of parallel
nodes.
There are several reasons
- To maintain distinct test and production
environments
- To use different software releases
Each instance can manage multiple
databases.

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

12 / 69

1. Architecture and Concepts

2. Installation and Create Objects

3. Join Strategies and Explain

4. Performance Considerations

Agenda

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

13 / 69

DB2 UDB DPF Setup Checklist

Install DB2 DPF Feature Code

Export home directory of instance owner userid and mount it on each node

Create groups (Instance owner, fenced, DAS)

Create users (Instance owner, fenced, DAS) and set passwords

Create Instance, DAS

Update Node Configuration File (db2nodes.cfg)

Reserve inter-communication ports to enable FCM (/etc/services)

Modify Configuration for DB2 UDB DPF

Enable execution of remote commands ($HOME/.rhosts)

DB2 Start

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

14 / 69

Node Configuration File and /etc/services File

This example shows the same four database partitions running on two physical machines

/etc/services

- Must be greater than or equal to the greatest number of database partitions on any physical partition in the instance

- The name of the service of the first port must be ‘DB2_instance-name’

- The name of the service of the last port must be ‘DB2_instance-name_END’

$HOME/sqllib/db2nodes.cfg

- partition : Must be unique and in ascending sequence

- Hostname : The hostname of the ip address used by db2start and db2stop

- Port : The logical port number for the database partition

1 node1 0

2 node1 1

3 node2 0

4 node2 1

partition hostname Port

$HOME/sqllib/db2nodes.cfg

DB2_inst1 60000/tcp

DB2_inst1_END 60001/tcp

/etc/services
Node 1Node 1

Partition1 Partition2

Node 2Node 2

Partition3 Partition4

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

15 / 69

.rhosts File

DB2 DPF uses the rsh command to execute some commands such as db2start

This can be done by updating the .rhosts file in the instances home directory

The hostname must be defined in the /etc/hosts file

node1 db2inst1

node2 db2inst1

node3 db2inst1

node4 db2inst1

hostname Userid

$HOME/.rhosts

+ db2inst1

hostname Userid

$HOME/.rhosts

------ OR -----

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

16 / 69

Database, Partition Group, Table Spaces and Tables, PK

Databases are defined across database partitions specified at the instance level
- $DBPATH/NODE0000/instname/SQL0001,

$DBPATH/NODE0001/instname/SQL0001,…..

Partition groups are defined across one or more database partitions

Create buffer pool with partition group

Table spaces are created in partition groups

Table spaces are a logical layer created within partition groups and
provide a logical layer between database objects and physical storage

Tables are created with Partitioning Key within table spaces

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

17 / 69

Create Options (1)

Create Database
- db2 create database sample on /database

- create a database named sample on the path /database across all partitions in db2nodes.cfg

- /database/instance-name/NODE0001/SQL00001

/database/instance-name/NODE0002/SQL00001

………..

- catalog partition is the partition from which CREATE DATABASE was issued

Create Partition Group
- create database partition group PG1 on all dbpartitionnums ;

- create database partition group PG2 on partitionnums (1,3,4) ;

- create database partition group PG3 on partitionnums (2) ;

Create Bufferpool
- create bufferpool buff_1 database partition group PG1 size 10000 ;

- create bufferpool buff_1 size 10000;

alter bufferpool buff_1 add database partition group PG1 ;

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

18 / 69

Create Options (2)
Create DMS Regular Tablespace

- CREATE REGULAR TABLESPACE TS1 IN DATABASE PARTITION GROUP PG1

PAGESIZE 32K MANAGED BY DATABASE

USING (DEVICE '/dev/container1' 917504,

DEVICE ‘/dev/container2’ 917504) ON DBPARTITIONNUM(1)

USING (DEVICE '/dev/container3' 917504) ON DBPARTITIONNUM(3)

USING (DEVICE '/dev/container4' 917504) ON DBPARTITIONNUM(4)

bufferpool buff_1 ;

Create SMS Regular Tablespace
- CREATE REGULAR TABLESPACE TS2 IN DATABASE PARTITION GROUP PG2

PAGESIZE 32K MANAGED BY SYSTEM

USING (‘/database/NODE0001/sms/cont1,

/database/NODE0001/sms/cont2’) ON DBPARTITIONNUM(1)

USING (‘/database/NODE0002/sms/cont1,

/database/NODE0002/sms/cont2’) ON DBPARTITIONNUM(2)

USING (‘/database/NODE0004/sms/cont1’) ON DBPARTITIONNUM(4)

bufferpool buff_2 ;

Create Table
- CREATE TABLE T1 (C1 INTEGER, C2 CHAR(10), C3 VARCHAR(100))

PARTITIONING KEY (C1) USING HASHING

IN TBS1 INDEX IN TBS2 ;

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

19 / 69

Database Objects

Partition group A is defined across Partition1,2,4

Partition group B is a single partition group on partition 3

Tablespace X, Y is created in Partition group A, Tablespace Z is created in Partition group B

Table 1 and Table 2 are created in Tablespace X and Table 3 is created in Tablespace Y

Table 4 is created in Tablespace Z

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

20 / 69

Three Partition groups Created by Database Creation

Instance is defined across Partition 0, Partition 1, Partition 2, Partition 3

Default partitioning map is created for partition group when partition group is created

- IBMDEFAULTGROUP, IBMTEMPGROUP, IBMCATGROUP

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

21 / 69

Partitioning Map

Created when partition group is created or during data redistribution
Usually only one partitioning map for a partition group
Partition Map is a vector of 4096 parallel database partition numbers
The hashing algorithm uses the partition key as an input to generate a partition number

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

22 / 69

Partitioning Key (PK) Considerations

Include frequently used join columns

Should spread data evenly across partitions

Broad range domain

Formed with minimum number of columns

Integer is more efficient than character which is more efficient than decimal

No long fields allowed

Unique index or primary key must be superset of PK

If DB2_UPDATE_PART_KEY=ON, update of Partitioning Key allowed

No alterations of Partitioning Key allowed

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

23 / 69

Activate Database

The ACTIVATE DATABASE command starts up the specified databases

- db2 activate database sample

Allocates DB Global Memory

Starts Database Processes

Allocates Log files

Must be shut down with the DEACTIVATE DATABASE command or with the db2stop
command

In a partitioned database, this command activate the selected partitioned database on all
database partitions

When connect without activate db, only coordinator and catalog partitions are activated

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

24 / 69

db2_all Command

The db2_all command sends the command to all database partitions listed in the
db2nodes.cfg file

To send to all database partitions :

- db2_all ‘command’

- db2_all ‘command; command’

Send command to only database partition 1 :

- db2_all ‘<<+1< command’

Send command to all database partitions except 1 :

- db2_all ‘<<-1< command’

To execute command simultaneously across all database partitions :

- db2_all ‘|| command’

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

25 / 69

SQL Functions Unique to DB2 UDB DPF

DBPARTITIONNUM (COLUMN)
- Returns the partition number of the rows
- select count(*) from employee where dbpartitionnum(empno) = 3 ;

- Returns # of rows of EMPLOYEE table on partition 3
PARTITION (COLUMN)
- Returns the hash bucket number of the rows
- select count(*) from employee where partition(empno) = 4093 ;

- Returns # of rows which hash to bucket 4093
CURRENT NODE special register
- Current node is set to coordinator partition
- select empno from employee where partitionnum(empno) = CURRENT NODE ;
Change working partition number
- db2 terminate
- export DB2NODE=2

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

26 / 69

Skew Check

Data skew should NOT happened in any case

Skew check example :

- select dbpartitionnum(col1), count(1)

from table_name

group by dbpartitionnum(col1)

order by 1 ;

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

27 / 69

1. Architecture and Concepts

2. Installation and Create Objects

3. Join Strategies and Explain

4. Performance Considerations

Agenda

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

28 / 69

DB2 UDB DPF Join Concepts

The data that is being joined must be physically located on the same partition

If Not on the same partition, DB2 will need to relocate rows from one partition to another to
physically accomplish the join

DB2 has several methods to relocate the rows

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

29 / 69

DB2 UDB DPF Join Strategies

Collocated
- Join locally on each partition

Directed Outer
- Hash rows from outer table based on join columns

- Direct rows to partitions of inner table using join columns as the partition key

Directed Inner
- Hash rows from inner table based on join columns

- Direct rows to partitions of outer table using join columns as the partition key

Directed Inner and Outer
- Hash rows on both tables to new partitions by hashing join columns

Broadcast Outer
- Broadcast outer table to all partitions containing the inner table

Broadcast Inner
- Broadcast inner table to all partitions containing the outer table

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

30 / 69

Collocated Join

The join predicate is assumed to be :

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

Both the LINEITEM and ORDERS tables are partitioned on the ORDERDEY column.

The ORDERKEY column of two tables is assumed CHAR column

The join is done locally at each database partition.

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

31 / 69

Directed Outer Table Join

The join predicate is assumed to be :

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

The LINEITEM table is partitioned on the ORDERKEY column

The ORDERS table is partitioned on a different column

The ORDER table is hashed and sent to the correct LINEITEM table database partition

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

32 / 69

Directed Inner Table Join

The join predicate is assumed to be :

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

The LINEITEM table is partitioned on the ORDERKEY column

The ORDERS table is partitioned on a different column

The ORDERS table is hashed and sent to the correct LINEITEM table database partition

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

33 / 69

Directed Inner and Outer Table Join

The join predicate is assumed to be :

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

Neither table is partitioned on the ORDERKEY column

Both table are hashed and sent to the database partitions where they are joined

Both table queues q2 and q3 are directed

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

34 / 69

Broadcast Outer Table Join

Neither table is partitioned on the join predicate columns

LINEITEM table is very large table and ORDERS table is very small table

ORDERS table is broadcast to all partitions of the LINEITEM table

Rather than partition both tables, it may be cheaper to broadcast the smaller table to the larger table

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

35 / 69

Broadcast Inner Table Join

Neither table is partitioned on the join predicate columns

ORDERS table is very large table and LINEITEM table is very small table

LINEITEM table is broadcast to all partitions of the ORDERS table

Rather than partition both tables, it may be cheaper to broadcast the smaller table to the larger table

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

36 / 69

Package Organization in Multipartitioned Database

Each SQL statement has one section

A section has one or more subsections in Multipartitioned environment

Subsections are performed by processes

The coordinator subsection is the master process

Table queues connect subsections

In complex query, many subsections is created

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

37 / 69

Subsection

Subsections are used in inter-partition parallelism

The optimizer may divide a query into subsection

A subsection is the smallest unit of a SQL request which may be shipped between

database partitions

In intra-partition parallelism, subsections can be further parallelized via subsection pieces

A subsection piece is a sequence of one or more database operators belonging to the

same SQL query

PackagePackage

SectionSection

SubsectionSubsection

Subsection PieceSubsection Piece

OperatorOperator

- Smallest piece to execute on a partition

- Smallest piece to execute on a CPU

- Smallest step in execution of SQL request

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

38 / 69

Table Queues

A table queue can be thought of as a temporary table

Never Materialized to disk – In memory only

Used to communicate via table I/O

- Read from table queue

- Write to table queue

A table queue physically consists of the 4KB

Communication buffers

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

39 / 69

Subsections – Simple Select

SQL Statement:

select *

from inst31.lineitem

order by L_LINENUMBER

Coordinator Subsection - Main Processing:

Distribute Subsection #1

| Broadcast to Node List

| | Nodes = 1, 2, 3, 4

Access Table Queue ID = q1 #Columns = 16

| Output Sorted

| | #Key Columns = 1

| | | Key 1: (Ascending)

Return Data to Application

| #Columns = 16

Subsection #1:

Access Table Name = INST31.LINEITEM ID = 8,4

| #Columns = 16

| Relation Scan

| | Prefetch: Eligible

| Lock Intents

| | Table: Intent Share

| | Row : Next Key Share

| Sargable Predicate(s)

| | Insert Into Sorted Temp Table ID = t1

| | | #Columns = 16

| | | #Sort Key Columns = 1

| | | | Key 1: L_LINENUMBER (Ascending)

| | | Sortheap Allocation Parameters:

| | | | #Rows = 14878

| | | | Row Width = 120

| | | Piped

Sorted Temp Table Completion ID = t1

Access Temp Table ID = t1

| #Columns = 16

| Relation Scan

| | Prefetch: Eligible

| Sargable Predicate(s)

| | Insert Into Asynchronous Table Queue ID = q1

| | | Broadcast to Coordinator Node

| | | Rows Can Overflow to Temporary Table

Insert Into Asynchronous Table Queue Completion ID = q1

End of section

Optimizer Plan:

RETURN

(1)

|

MBTQ

(2)

|

TBSCAN

(3)

|

SORT

(4)

|

TBSCAN

(5)

|

Table:

INST31

LINEITEM

Merge Broadcast
Table Queue

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

40 / 69

Subsections – Collocated Join (1)

SQL Statement:

select count(*)
from inst31.lineitem, inst31.orders
where l_orderkey =o_orderkey

Coordinator Subsection - Main Processing:
Distribute Subsection #1
| Broadcast to Node List
| | Nodes = 1, 2, 3, 4
Access Table Queue ID = q1 #Columns = 1
Final Aggregation
| Column Function(s)
Return Data to Application
| #Columns = 1

Subsection #1:

Access Table Name = INST31.ORDERS ID = 6,4

| #Columns = 1

| Relation Scan

| | Prefetch: Eligible

| Lock Intents

| | Table: Intent Share

| | Row : Next Key Share

| Sargable Predicate(s)

| | Insert Into Sorted Temp Table ID = t1

| | | #Columns = 1

| | | #Sort Key Columns = 1

| | | | Key 1: O_ORDERKEY (Ascending)

| | | Sortheap Allocation Parameters:

| | | | #Rows = 3742

| | | | Row Width = 8

| | | Piped

Sorted Temp Table Completion ID = t1

Access Temp Table ID = t1

| #Columns = 1

| Relation Scan

| | Prefetch: Eligible

Merge Join

| Access Table Name = INST31.LINEITEM ID = 8,4

| | #Columns = 1

| | Relation Scan

| | | Prefetch: Eligible

| | Lock Intents

| | | Table: Intent Share

| | | Row : Next Key Share

| | Sargable Predicate(s)

| | | Insert Into Sorted Temp Table ID = t2

| | | | #Columns = 1

| | | | #Sort Key Columns = 1

| | | | | Key 1: L_ORDERKEY (Ascending)

| | | | Sortheap Allocation Parameters:

| | | | | #Rows = 14878

| | | | | Row Width = 8

| | | | Piped

| Sorted Temp Table Completion ID = t2

| Access Temp Table ID = t2

| | #Columns = 1

| | Relation Scan

| | | Prefetch: Eligible

Partial Aggregation

| Column Function(s)

Insert Into Asynchronous Table Queue ID = q1

| Broadcast to Coordinator Node

| Rows Can Overflow to Temporary Table

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

41 / 69

Subsections – Collocated Join (2)

Optimizer Plan:

RETURN
(1)

|
GRPBY

(2)
|

BTQ
(3)

|
GRPBY

(4)
|

MSJOIN
(5)

/ \
TBSCAN TBSCAN

(6) (10)
| |

SORT SORT
(7) (11)

| |
TBSCAN TBSCAN

(8) (12)
| |

Table: Table:
INST31 INST31

ORDERS LINEITEM

Braoadcast Table Queue

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

42 / 69

db2exfmt Tool

Format the contents of the explain tables

Externalize the information provided by Visual Explain in a text-based output

Must create EXPLAIN tables

- execute ‘$HOME/sqllib/misc/EXPLAIN.DDL’

Populate the EXPLAIN tables

- db2 connect to dss

- db2 set current explain mode explain

- < Execute Query >

- db2 set current explain mode no

Invoke db2exfmt

- db2exfmt –d <dbname> -w -1 -n % -s % -# 0 -o exfmt.out

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

43 / 69

db2exfmt – Output Summary

Original/Optimized Statement

Access Plan Graph

Plan Operators

Plan Operator’s Detail Description

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

44 / 69

db2exfmt Output - Original/Optimized

Original Statement:

select count(*)
from inst31.lineitem, inst31.orders
where l_orderkey = o_orderkey

Optimized Statement:

SELECT Q4.$C0
FROM

(SELECT COUNT(1)
FROM

(SELECT RID
FROM INST31.ORDERS AS Q1, INST31.LINEITEM AS Q2
WHERE (Q2.L_ORDERKEY = Q1.O_ORDERKEY)) AS Q3) AS Q4

- Reverse-translated from the internal compiler
representation of the query

- To allow an understanding of the SQL
context from which the SQL optimizer
chose the access plan

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

45 / 69

db2exfmt Output - Access Plan

A graph with total cost, I/O cost

and cardinality for each operator

The costs are cumulative

Every operator adds its own cost

to the plan

Operator IDs can be match up

the steps in the different

representations of the access plan

Access Plan:

Total Cost: 1023.91

Query Degree: 1

Rows

RETURN

(1)

Cost

I/O

|

1

GRPBY

(2)

1023.91

163.283

|

4

DTQ

(3)

1023.91

163.283

|

1

GRPBY

(4)

1023.78

163.283

|

14878

MSJOIN

(5)

1019.74

163.283

/---+---\

3742 3.97595

TBSCAN FILTER

(6) (9)

477.846 531.465

113 50.283

| |

3742 14878

SORT IXSCAN

(7) (10)

477.845 531.465

113 50.283

| |

3742 14878

TBSCAN INDEX: INST31

(8) L_OK_BI

471.013

113

|

3742

TABLE: INST31

ORDERS

Operator ,Step #, Costs

Directed Table Queue

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

46 / 69

Access Plan – Visual Explain

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

47 / 69

db2exfmt Output - Plan Operators

Base access methods
- TBSCAN, IXSCAN, FETCH,..

Joins
- NLJOIN : Nested loop join
- MSJOIN : Merge scan join
- HSJOIN : Hash Join

Aggregation
- GRPBY, SUM, MIN/MAX,….

Temping (TEMP) and sorting (SORT)

Specialized operations
- Index ANDing (IXA), dynamic bitmap indexing
- Index Oring and list prefetch (RIDSCAN)
- Table queues (TQ)

Broadcast (BTQ)
Directed (DTQ)
Merging option (MDTQ, MBTQ)
Local table queue for SMP intra-partition parallelism (LTQ)

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

48 / 69

db2exfmt Output - Plan Operator Details

Every operator has its own description like:

Costs

- Total CPU and I/O resources consumed

Arguments

- Details on how operators executes

- Details are saved in the EXPLAIN_ARGUMENT table

Predicates

- A predicate is an element of a search condition that expresses or implies a comparison operation

- Predicates are included in clauses beginning with WHERE or HAVING

Input Stream/Output Stream

- Represents the input and output data streams between individual operators and data objects.

- The data objects themselves are represented in the EXPLAIN_OBJECT table

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

49 / 69

Plan Operator - Costs Example

3) TQ : (Table Queue)

Cumulative Total Cost: 1023.91 Cumulative costs
Cumulative CPU Cost: 5.29762e+07
Cumulative I/O Cost: 163.283

Cumulative Re-Total Cost: 1023.78 Cost to re-execute
Cumulative Re-CPU Cost: 5.28555e+07 subplan
Cumulative Re-I/O Cost: 163.283 - fetching the next row

Cumulative First Row Cost: 1023.86 Total cost to return
first row

Cumulative Comm Cost: 4.03857 Communication cost
Cumulative First Comm Cost: 0

Estimated Bufferpool Buffers: 66 Bufferpool pages
required by this
operator

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

50 / 69

Plan Operator - Arguments Example

Provide details on how operators execute

Description provided in EXPLAIN_ARGUMENT Table

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

51 / 69

Plan Operator - Predicates Example

Provide details on which predicates (if any) are applied

Description provided in EXPLAIN_PREDICATE Table

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

52 / 69

Plan Operator - Input/Output Streams

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

53 / 69

Plan Operator - Input/Output Streams Example

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

54 / 69

1. Architecture and Concepts

2. Installation and Create Objects

3. Join Strategies and Explain

4. Performance Considerations

Agenda

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

55 / 69

System Memory Considerations

Consider the memory required by the operating system

At the database manager level, the primary memory usage parameters deal with the requirements of FCM

At the database level, the parameter that needs to be considered most highly is the configuration of your
buffer pools

- OLTP environment

To allocate up to 75% of the machine’s remaining memory to the buffer pools

- OLAP environment

The recommendation would tend toward 50% of the machine’s remaining memory to the buffer pool

Sort heap threshold (sheapthres)

- A starting point is the memory remaining after the buffer pool space

Sort heap (sortheap)

- sheapthres/(number of concurrent sorts)

- In an OLAP environment, all of the executing agents will be doing sorts

Application memory

- For local applications – those running on the database server

- They can have a significant impact on the amount of memory available on the machine

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

56 / 69

Fast Communication Manager

Fast Communication Manager transfers data between partitions
fcm_num_buffers

- DBM CFG Parameter
- Number of FCM buffers
- Specifies number of 4KB buffers used for internal communications among and within db partitions
- FCM daemons on the same node communicate through UNIX sockets
FCM Monitor Data Elements

- db2 get snapshot for dbm
- db2 get snapshot for fcm for all nodes

FCM Snapshot

Node FCM information corresponds to = 1 Node Total Buffers Total Buffers Connection
Free FCM buffers = 4093 Number Sent Received Status
Free FCM buffers low water mark = 4071 ----------- ------------------ ------------------ -----------------
Free FCM message anchors = 1534 1 0 0 Active
Free FCM message anchors low water mark = 1530 2 95 135 Active
Free FCM connection entries = 1536 3 85 115 Active
Free FCM connection entries low water mark = 1523 4 86 117 Active
Free FCM request blocks = 2022
Free FCM request blocks low water mark = 2011
Snapshot timestamp = 02/18/2008 23:42:48.482434
Number of FCM nodes = 4

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

57 / 69

DB2_FORCE_FCM_BP – Registry Variable

Applicable to DB2 UDB ESE for AIX when using multiple logical partitions
Enabled by default on all non-AIX platforms (OFF), Not Applicable
When this registry variable is ON :
- The FCM buffers are always created in a separate memory segment
- The communication between FCM daemons occurs through shared memory

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

58 / 69

Block-Based Buffer Pools

By default, the buffer pools are page-based
- Prefetching pages from disk is expensive because of I/O overhead
- Most platforms provide High-performance primitives that read contiguous pages

from disk into non-contiguous portions of memory

Block-based buffer pools for improved sequential prefetching
- Sequential prefetching can be enhanced if contiguous pages can be read into contiguous pages

within a buffer pool
- A Block-based Buffer Pool has both ‘Page Area’ and a ‘Block Area’
- For optimal performance, BLOCKSIZE should be less than table space extent size or equal
- If applications don’t use sequential prefetching, then block area of the buffer pool is wasted

Pages

Blocks

BP1

Pages

Blocks

BP2

Create bufferpool bufferpool-name size-of-pages numblockpages 60 blocksize 32 ;

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

59 / 69

Monitoring Prefetch using Block I/O and Vectored I/O

db2 get snapshot for bufferpools on sample

Vectored IOs = 8362028
Pages from vectored IOs = 28771169
Block IOs = 1094466149
Pages from block IOs = 17417600434

Vectored IOs
- The number of vectored I/O requests

Pages from vectored IOs
- The total number of pages read by vectored I/O into the page area of the buffer pool
Block IOs
- The number of block I/O requests
Pages from block IOs
- The total number of pages read by block I/O into the block area of the buffer pool

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

60 / 69

Database Monitoring - Snapshot

The snapshot monitor switches can be obtained using the command
- db2 get monitor switches [at dbpartitionnum n | global]

Default values for these switches can be defined within DBM CFG File
- db2 update dbm cfg using DFT_MON_BUPOOL ON
- db2 update dbm cfg using DFT_MON_LOCK ON

The monitor switches can be turn on or off using the command
- db2 update monitor switches using switch-name on [at dbpartitionnum n | global]

Taking snapshots using GET SNAPSHOT command
- db2 get snapshot for database on sample [at dbpartitionnum n | global]
- db2 get snapshot for bufferpools on sample [at dbpartitionnum n | global]

Taking snapshots using SQL Table functions
To capture a snapshot for the current connected partition :
- select rows_written, rows_read, table_name

from (snapshot_table(‘TP1’, -1)) as snap;
To capture a global snapshot :
- select rows_written, rows_read, table_name

from (snapshot_table(‘TP1’, -2)) as snap;

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

61 / 69

db2advis – Partitioning Recommendations

To recommend new indexes of the tables in a query workload

To recommend changes in the partitioning keys in a query workload

The option ‘-m IP’ requests the design advisor to evaluate both indexes and partitioning keys

To help you migrate from a single-partition to a multi-partition database

Can only recommend partitioning on DB2 ESE

db2advis –d dss –i join1.sql –m IP –o partadvise.ddl

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

62 / 69

Non-Buffered Insert & Buffered Insert
Non-Buffered Insert
- The Default insert strategy
- INSERT DEF precompile or bind option
- Each Row is individually hashed and loaded to the appropriate partition
- Occurs serially across all partitions
Buffered Insert
- INSERT BUF precompile or bind option
- Each Row is hashed into a 4KB insert buffer at the coordinator partition
- When the buffer becomes full, the buffer is sent to its target partition
- Occurs in parallel across all partitions

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

63 / 69

Import with Buffered Inserts

Use the DB2 bind utility to request buffered inserts
- db2 bind $HOME/sqllib/bnd/db2uimpm.bnd grant public blocking all insert buf
But details about a failed buffered insert are not returned – Error reporting

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

64 / 69

Application Design - Partition Connection

Application aware of data distribution can connect to correct partition

High performance OLTP : Local Bypass

Specifies the database partition to which a connect is to be made
- db2 set client connect_dbpartitionnum n
- db2 connect to dss user inst01 using inst01

Specifies the database partition to which an attach is to be made
- db2 set client attach_dbpartitionnum n
- db2 attach to inst01 user inst01 using inst01

Permits the client to connect to the catalog database partition
- db2 set client connect_dbpartitionnum catalog_dbpartitionnum

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

65 / 69

DB2_PARALLEL_IO - Registry Variable

If this registry variable is not set, the degree of
parallelism of any table space will be the
number of containers of the table space

If this registry variable is set, then the degree
of parallelism of the table space will be the
ratio between the prefetch size and the extent
size of this table space

The prefetch size should be calculated based
on the following equation:

pretetch size = (number of containers) *
(number of disks per container) * extent size

db2set DB2_PARALLEL_IO=*

db2set DB2_PARALLEL_IO=*,1:3

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

66 / 69

Automatic Prefetch Calculation

If a table space is created with a PREFETCHSIZE of AUTOMATIC

Or If the database is configured with DFT_PREFETCH_SZ of AUTOMATIC and no PREFETCHSIZE is specified for the
table space

DB2 will automatically calculate and update the prefetch size of table space using the following equation:
- prefetch size = (# containers) * (# phisical spindles) * extent size
- Physical spindles can be specified through the DB2_PARALLEL_IO

- db2set DB2_PARALLEL_IO=1:3
- A default of 6 at DB2_PARALLEL_IO (the value for a RAID-5 device)

This calculation is performed:
- At database start-up time
- When a table space is first created with AUTOMATIC prefetch size
- When the number of containers for a table space changes through execution of an ALTER TABLESPACE
statement

- When the prefetch size for a table space is updated to be AUTOMATIC through
execution of an ALTER TABLESPACE statement

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

67 / 69

Processes, Connections and Agents

In a non-partitioned, but intra-patition parallel environment
- maxcagents

The maximum number of db2agents concurrently executing a database manager transaction
- max_coordagents

Limits the maximum number that can be allocated
- maxappls

The maximum number of concurrent applications that can connect to a database

In a partitioned environment
- maxcagents = max_coordagents
- The maximum number of db2agents concurrently executing a database manager transaction.
- Total of all coordinator and subagents.

- db2agent : coordinator agent
- db2agntp : Active subagent
- db2agnta : Idle subagent

- maxappls
The maximum number of applications that can be active a database partition

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

68 / 69

Agent States – Assigning Subagents

The Best Reliable Partner for High Availability – IBM S/W Maintenance Service

© 2008 IBM Corporation

69 / 69

감사합니다.감사합니다.

Q&A

